File size: 1,780 Bytes
f6d6e90 aab4627 f6d6e90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
base_model: google/efficientnet-b2
datasets:
- 0-ma/geometric-shapes
license: apache-2.0
metrics:
- accuracy
pipeline_tag: image-classification
---
# Model Card for VIT Geometric Shapes Dataset Tiny
## Training Dataset
- **Repository:** https://huggingface.co/datasets/0-ma/geometric-shapes
## Base Model
- **Repository:** https://huggingface.co/models/google/efficientnet-b2
## Accuracy
- Accuracy on dataset 0-ma/geometric-shapes [test] : 0.856904761904762
# Loading and using the model
import numpy as np
from PIL import Image
from transformers import AutoImageProcessor, AutoModelForImageClassification
import requests
labels = [
"None",
"Circle",
"Triangle",
"Square",
"Pentagon",
"Hexagon"
]
images = [Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_circle.jpg", stream=True).raw),
Image.open(requests.get("https://raw.githubusercontent.com/0-ma/geometric-shape-detector/main/input/exemple_pentagone.jpg", stream=True).raw)]
feature_extractor = AutoImageProcessor.from_pretrained('0-ma/efficientnet-b2-geometric-shapes')
model = AutoModelForImageClassification.from_pretrained('0-ma/efficientnet-b2-geometric-shapes')
inputs = feature_extractor(images=images, return_tensors="pt")
logits = model(**inputs)['logits'].cpu().detach().numpy()
predictions = np.argmax(logits, axis=1)
predicted_labels = [labels[prediction] for prediction in predictions]
print(predicted_labels)
## Model generation
The model has been created using the 'train_shape_detector.py.py' of the project from the project https://github.com/0-ma/geometric-shape-detector. No external code sources were used. |