File size: 16,423 Bytes
6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 f588a6c 6e56ef6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f444c21f0e0>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f444c21f170>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f444c21f200>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f444c21f290>",
"_build": "<function ActorCriticPolicy._build at 0x7f444c21f320>",
"forward": "<function ActorCriticPolicy.forward at 0x7f444c21f3b0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f444c21f440>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f444c21f4d0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f444c21f560>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f444c21f5f0>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f444c21f680>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f444c26b840>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 16,
"num_timesteps": 2015232,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1652550516.0483027,
"learning_rate": {
":type:": "<class '__main__.Scheduler'>",
":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc1ZDhjNGZmNDBmNDUxMzllY2YxYmRiMGRhZTdiMjmUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMTAtODJlZTE3OWRhZTFkPpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/vrhR64UeuhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPvpHgfP0EERoIEc/764UeuFHrnViLg==",
"learning_rate": 2.506191890196153e-05,
"decay": 0.99
},
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class '__main__.Scheduler'>",
":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc1ZDhjNGZmNDBmNDUxMzllY2YxYmRiMGRhZTdiMjmUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMTAtODJlZTE3OWRhZTFkPpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/vrhR64UeuhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPvpHgfP0EERoIEc/764UeuFHrnViLg==",
"learning_rate": 2.506191890196153e-05,
"decay": 0.99
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEDxBz7HvpI/PJQnPiQ6wb5q/yg+iRS6PAAAAAAAAAAAIBEpvvdmUT47EaE9WYCRvgBGDLt8bUu9AAAAAAAAAAAA8T49V5svPPDo571ObSe+q5s0vAjdFD0AAAAAAAAAAM1Fbz0nbmM/zYwvPeeyz74u88E99UtTPQAAAAAAAAAAQLwyPsyKoj/4ZR4/EBSzvnNtaz4ldJs+AAAAAAAAAAAzQtW9SCutui2QKLjAgyyzNmBtOlYkQTcAAIA/AAAAAFNgN76fqxw/0icJvssJ+L7RnY291fgAvgAAAAAAAAAAZjaFPV9lQj6+YlK+a2FDvsxZ+rzoxf07AAAAAAAAAABzdqQ9e1qXuuJg4zjFK0c0ibTZOs75ArgAAIA/AACAP91qmT54DZ4/Un4HPx83ur5pg8A+DffNPQAAAAAAAAAAzcFGvRxMrz6ukPM8CACHviLHuLuGxNY8AAAAAAAAAAANB+Y9mvlGPhbpSL6LboK+x/zAvL0TrD0AAAAAAAAAAOOuTb6IXC4/Xg6WPQMWnb7bfKO9VQ0JugAAAAAAAAAAMzarvSkYF7rf3zU2DYH8MDVkVbsqJF+1AAAAAAAAgD9mjJO8bG3/uwhaazwp6JU8Yj1avfWaej0AAIA/AACAP2YgkrzDGUm6eEO/N+Y2jDEoroo5ey7etgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.007616000000000067,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVeRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+n5qvPQwcUCUhpRSlIwBbJRNKAGMAXSUR0CgKUuAiFCcdX2UKGgGaAloD0MIQkP/BJdGcUCUhpRSlGgVTTsBaBZHQKAp42tMfzV1fZQoaAZoCWgPQwjPEI5ZdrVwQJSGlFKUaBVNFAFoFkdAoCpymQ8wH3V9lChoBmgJaA9DCD8Cf/h52m1AlIaUUpRoFU0fAWgWR0CgKp9P+GXYdX2UKGgGaAloD0MId9oaEYwqckCUhpRSlGgVTR0BaBZHQKAqrnXd0q91fZQoaAZoCWgPQwikwthCENdvQJSGlFKUaBVNBQFoFkdAoCuWYYzi0nV9lChoBmgJaA9DCOlhaHXyc3FAlIaUUpRoFU0PAWgWR0CgLEoWP91mdX2UKGgGaAloD0MIiZl9HiO7bUCUhpRSlGgVTSIBaBZHQKAsyF8G9pR1fZQoaAZoCWgPQwiJfm39dIdtQJSGlFKUaBVNGAFoFkdAoC1NNQCSzXV9lChoBmgJaA9DCAouVtSgHnBAlIaUUpRoFU1KAWgWR0CgLV+vZAY6dX2UKGgGaAloD0MIJ4dPOhFocUCUhpRSlGgVTTIBaBZHQKAtdzFuNxV1fZQoaAZoCWgPQwgoYhHDDhBzQJSGlFKUaBVNIwFoFkdAoC3HWcz68HV9lChoBmgJaA9DCCaKkLqdgnBAlIaUUpRoFU1oAWgWR0CgLdm5tm+TdX2UKGgGaAloD0MIpFTCE3oYbkCUhpRSlGgVS/BoFkdAoC325rgwXnV9lChoBmgJaA9DCHPyIhPwfnFAlIaUUpRoFU1JAWgWR0CgLh7pNbkfdX2UKGgGaAloD0MI/fSfNf9ecUCUhpRSlGgVTTgBaBZHQKAuS0AtFrl1fZQoaAZoCWgPQwia6zTS0k5wQJSGlFKUaBVNowFoFkdAoC5iFPBSDXV9lChoBmgJaA9DCEtWRbjJLnFAlIaUUpRoFU1OAWgWR0CgLpHzxwyZdX2UKGgGaAloD0MIH7qgvqVVckCUhpRSlGgVTT8BaBZHQKAv1ikO7QN1fZQoaAZoCWgPQwjPglDeB+xyQJSGlFKUaBVNXAFoFkdAoDBtaB7NS3V9lChoBmgJaA9DCB/4GKx4DnBAlIaUUpRoFU1MAWgWR0CgMgBwVCXydX2UKGgGaAloD0MIyAkTRrORb0CUhpRSlGgVTQoBaBZHQKAyOOcUdrB1fZQoaAZoCWgPQwgyPWGJBxhxQJSGlFKUaBVNBwFoFkdAoDI/tv4ub3V9lChoBmgJaA9DCB5Td2XXu3JAlIaUUpRoFU0zAWgWR0CgMoPM0P6LdX2UKGgGaAloD0MIZvZ5jHIrcECUhpRSlGgVTZMBaBZHQKAypSDRMOB1fZQoaAZoCWgPQwh81F+vMDpxQJSGlFKUaBVNVwFoFkdAoDKyWHDaXnV9lChoBmgJaA9DCGouNxjqv3JAlIaUUpRoFU1FAWgWR0CgMvVAAyVOdX2UKGgGaAloD0MIHvmDgWc3bkCUhpRSlGgVTRMBaBZHQKAy+CKaXrt1fZQoaAZoCWgPQwhdF35wPhZuQJSGlFKUaBVNDQFoFkdAoDMtjI7vHHV9lChoBmgJaA9DCEBPAwbJM3BAlIaUUpRoFU07AWgWR0CgMzl7laKUdX2UKGgGaAloD0MIkxtF1lrNcECUhpRSlGgVTWEBaBZHQKAzR5HmRvF1fZQoaAZoCWgPQwhHOZhNgM9yQJSGlFKUaBVNOgFoFkdAoDNUQZn+Q3V9lChoBmgJaA9DCDSitDd43nJAlIaUUpRoFU10AWgWR0CgND8inpB5dX2UKGgGaAloD0MIZcOaymKXcECUhpRSlGgVTR0BaBZHQKA1AUkfLcN1fZQoaAZoCWgPQwjn/BTHAZJvQJSGlFKUaBVNVQFoFkdAoDVnT/hl2HV9lChoBmgJaA9DCArWOJsO4WxAlIaUUpRoFU0NAWgWR0CgNtg75mAcdX2UKGgGaAloD0MIRrWIKKZWb0CUhpRSlGgVTSkBaBZHQKA2+jmjj711fZQoaAZoCWgPQwiflEkN7TJyQJSGlFKUaBVNOAFoFkdAoDdMAT7EYXV9lChoBmgJaA9DCJcaoZ8pSnJAlIaUUpRoFU0VAWgWR0CgN2PVNHpbdX2UKGgGaAloD0MI53EYzJ+TcECUhpRSlGgVTTcBaBZHQKA3hXGwRoR1fZQoaAZoCWgPQwiYTus2qMRtQJSGlFKUaBVNLQFoFkdAoDfRtBOYY3V9lChoBmgJaA9DCIdu9gfKPnJAlIaUUpRoFU0jAWgWR0CgN+Y4ACGOdX2UKGgGaAloD0MIWhDK+3jOckCUhpRSlGgVTVMBaBZHQKA4Ip6yB091fZQoaAZoCWgPQwj6RQn6i4tvQJSGlFKUaBVNfwFoFkdAoDhD/lyR0XV9lChoBmgJaA9DCJM5lnfVlnJAlIaUUpRoFU0vAWgWR0CgOEQiaAnVdX2UKGgGaAloD0MIBcO5hpkXbECUhpRSlGgVTUQBaBZHQKA4bsMy8Bd1fZQoaAZoCWgPQwhweEFE6oFyQJSGlFKUaBVNQQFoFkdAoDhyN83Mp3V9lChoBmgJaA9DCNS3zOmyhG5AlIaUUpRoFU0sAWgWR0CgQzjLjghsdX2UKGgGaAloD0MIfR8OEmLPcECUhpRSlGgVTR4BaBZHQKBDXyPuG9J1fZQoaAZoCWgPQwjnNAu0O/RcQJSGlFKUaBVN6ANoFkdAoEQK/Efkm3V9lChoBmgJaA9DCLYRT3bzz3FAlIaUUpRoFU0NAWgWR0CgREPY4ACGdX2UKGgGaAloD0MIHAqfrYMvVUCUhpRSlGgVTQQBaBZHQKBEhBRhttR1fZQoaAZoCWgPQwj+mUF84GByQJSGlFKUaBVNsgFoFkdAoESfT5O8CnV9lChoBmgJaA9DCNmvO915lG5AlIaUUpRoFU0WAWgWR0CgRO+RPoFFdX2UKGgGaAloD0MI6/1GO25dcUCUhpRSlGgVTRkBaBZHQKBFb3Roh6l1fZQoaAZoCWgPQwipaoKo+ytxQJSGlFKUaBVL8WgWR0CgRXhQemvXdX2UKGgGaAloD0MI1lQWhd1zcECUhpRSlGgVTTEBaBZHQKBFiis4ku91fZQoaAZoCWgPQwj60XDKHJhwQJSGlFKUaBVNMQFoFkdAoEXmtr9ETnV9lChoBmgJaA9DCGsOEMzRvHFAlIaUUpRoFU0TAWgWR0CgRf6EBbOedX2UKGgGaAloD0MI68a7I2OgcUCUhpRSlGgVTY4BaBZHQKBGjCAtnPF1fZQoaAZoCWgPQwgtk+F4foxwQJSGlFKUaBVNRwFoFkdAoEaalenhsXV9lChoBmgJaA9DCOfgmdDkKXJAlIaUUpRoFU2AAWgWR0CgR06ouPFOdX2UKGgGaAloD0MIoDU//hKxcUCUhpRSlGgVTYUBaBZHQKBHhBsQ/X51fZQoaAZoCWgPQwgKhJ1ilelxQJSGlFKUaBVNKAFoFkdAoEgcB2fTTnV9lChoBmgJaA9DCMH9gAeGRXFAlIaUUpRoFU1JAWgWR0CgSITyJ9ApdX2UKGgGaAloD0MItHQF28j6cECUhpRSlGgVTQMBaBZHQKBIqgJTl1d1fZQoaAZoCWgPQwhJvady2hJwQJSGlFKUaBVNHwFoFkdAoEjrdxhlUnV9lChoBmgJaA9DCPYKC+6HCW5AlIaUUpRoFU0fAWgWR0CgST6vzOHGdX2UKGgGaAloD0MICi3r/jEucUCUhpRSlGgVTU8BaBZHQKBJfaEBbOh1fZQoaAZoCWgPQwiP/SyWImtxQJSGlFKUaBVNJgFoFkdAoEmh1zQu3HV9lChoBmgJaA9DCBSy8zY2Z29AlIaUUpRoFU0cAWgWR0CgSeWPDHfedX2UKGgGaAloD0MIHZHvUirAcECUhpRSlGgVTTMBaBZHQKBKXrgwXZZ1fZQoaAZoCWgPQwjoSgSqP7ZxQJSGlFKUaBVNSAFoFkdAoEqiUs4DLnV9lChoBmgJaA9DCFxYN96dgnFAlIaUUpRoFU0sAWgWR0CgSp7NbC79dX2UKGgGaAloD0MIMGghAWMgcECUhpRSlGgVTSABaBZHQKBLKPz4DcN1fZQoaAZoCWgPQwj3dktyAB1zQJSGlFKUaBVNXQFoFkdAoEt5X4j8k3V9lChoBmgJaA9DCMfzGVBvEnBAlIaUUpRoFU1ZAWgWR0CgS/G3nZCfdX2UKGgGaAloD0MITwZHyauTQkCUhpRSlGgVS89oFkdAoEvutMfzSXV9lChoBmgJaA9DCNHoDmInDnJAlIaUUpRoFU0iAWgWR0CgTBhUaQ3hdX2UKGgGaAloD0MIQWSRJt7JRECUhpRSlGgVS9hoFkdAoEw9UKiPAHV9lChoBmgJaA9DCNUFvMywmW5AlIaUUpRoFU1GAWgWR0CgTGF6JIlMdX2UKGgGaAloD0MIDKzj+OFbcUCUhpRSlGgVTS8BaBZHQKBNKx8lXzV1fZQoaAZoCWgPQwjZ0TjU711yQJSGlFKUaBVNSwFoFkdAoE5b7CSA6XV9lChoBmgJaA9DCPT8aaM6T3FAlIaUUpRoFU2MAWgWR0CgTllKTSssdX2UKGgGaAloD0MIAmTo2MH8bUCUhpRSlGgVTSMBaBZHQKBOZ58BuGd1fZQoaAZoCWgPQwjr5uJve7twQJSGlFKUaBVNBwFoFkdAoE6wcxTKknV9lChoBmgJaA9DCAIQd/XqfXFAlIaUUpRoFUvqaBZHQKBOxgNPP9l1fZQoaAZoCWgPQwi7tyIxwYhvQJSGlFKUaBVNLQFoFkdAoE8TOVxCIHV9lChoBmgJaA9DCLa/sz36Q3BAlIaUUpRoFU1sAWgWR0CgTy0YTCcgdX2UKGgGaAloD0MIfVpFf2ivb0CUhpRSlGgVTUEBaBZHQKBPq6YE4ed1fZQoaAZoCWgPQwjUQzS6g5RGQJSGlFKUaBVL/2gWR0CgT/iFsYVJdX2UKGgGaAloD0MIzApFut+vckCUhpRSlGgVS/BoFkdAoFAZFRYRunV9lChoBmgJaA9DCKbW+4127XFAlIaUUpRoFU0yAWgWR0CgUEYptrKvdX2UKGgGaAloD0MI8zl3u55zcUCUhpRSlGgVTTABaBZHQKBQ39KEnLJ1fZQoaAZoCWgPQwhlj1AzpN1uQJSGlFKUaBVNEwFoFkdAoFGq/wiJO3V9lChoBmgJaA9DCI0ngjiPHm9AlIaUUpRoFU1VAWgWR0CgUd8Md92HdX2UKGgGaAloD0MIWDfeHZn1bECUhpRSlGgVTXkBaBZHQKBR6uGsV+J1fZQoaAZoCWgPQwjzk2qfTrByQJSGlFKUaBVNKgJoFkdAoFJN76YVqXV9lChoBmgJaA9DCJLoZRTLOVBAlIaUUpRoFUv5aBZHQKBSUSOinHh1fZQoaAZoCWgPQwgotRfRtotwQJSGlFKUaBVNDwFoFkdAoFKkGiYb83VlLg=="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 492,
"n_steps": 1024,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 64,
"n_epochs": 4,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |