DeepRL-PPO-LLv2 / config.json
0x05a4's picture
Baseline: LR=1e-4, epochs=1e6
1d38dd0
raw
history blame
14.4 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f394c0eda70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f394c0edb00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f394c0edb90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f394c0edc20>", "_build": "<function ActorCriticPolicy._build at 0x7f394c0edcb0>", "forward": "<function ActorCriticPolicy.forward at 0x7f394c0edd40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f394c0eddd0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f394c0ede60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f394c0edef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f394c0edf80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f394c0f2050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f394c142570>"}, "verbose": false, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652548021.4101498, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAUszuhgxY/MOSHPat8KL6U+sm8ZASVvQAAAAAAAAAA5icMPRQymbrY/Fy6d+5EtX4eALv6TX85AACAPwAAgD9a1Ic+Jl+6Pibtnb3UIfu9+GmzPAu6pz0AAAAAAAAAAM0Bnr1cD2y67CKyugtEp7Uo2ec6CvvQOQAAgD8AAIA/ZkeAvIVz47kYJ7K7B24dN543tbptVZC2AACAPwAAgD/NObU910N6uZ9gHLs054u2Z6s0O95xATYAAIA/AACAP80rsLwpXBW6KoH6Oc1zPrOol8G7mxwTuQAAgD8AAIA/DSnmvT3KfDjbbmA7ybTFNYr9oLkpl4a6AACAPwAAgD9aRyq+nFBavJq6KbwMfoy6w0u4PZqgZjsAAIA/AACAP2AuPL6Ks108vXTkO430HbrHPe29Gy0bOwAAgD8AAIA/DUQHPtKcgbuD4ic6zeRPuFOSwbz6zTG5AACAPwAAgD+ayxG9wC2WP7pWsD3F54K+AgKDvASoCD4AAAAAAAAAAGa2m71cLxC6n0+GO43eMTbjxPY6lTqaugAAgD8AAIA/luWAPkPDZLzajvY614fsuODxw73KmxK6AACAPwAAgD+a3Tg9j15+ut6oiruU7qG2bz2AOpBToToAAIA/AACAPwACYj32YHK6dX3fuhEkRbSm9Su7QDsBOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMITtGRXP7cYUCUhpRSlIwBbJRN6AOMAXSUR0CQFS5+YtxudX2UKGgGaAloD0MINV8lHztBYkCUhpRSlGgVTegDaBZHQJAdC0F8ohJ1fZQoaAZoCWgPQwiGdePdEfRgQJSGlFKUaBVN6ANoFkdAkB56oESuhnV9lChoBmgJaA9DCEjeOZShG1pAlIaUUpRoFU3oA2gWR0CQHom6XjU/dX2UKGgGaAloD0MIn+OjxZnyYkCUhpRSlGgVTegDaBZHQJAewTYdyT91fZQoaAZoCWgPQwg0hjlBmywRQJSGlFKUaBVNQAFoFkdAkB9a9kBjnXV9lChoBmgJaA9DCLoQqz/CDGNAlIaUUpRoFU3oA2gWR0CQH8ev6j33dX2UKGgGaAloD0MIBaVo5V58OkCUhpRSlGgVTT8BaBZHQJAjOoJiRW91fZQoaAZoCWgPQwi6pGq7CQNhQJSGlFKUaBVN6ANoFkdAkCiI+4b0e3V9lChoBmgJaA9DCEhvuI/chGZAlIaUUpRoFU3oA2gWR0CQMaF23azvdX2UKGgGaAloD0MIYygn2lURYUCUhpRSlGgVTegDaBZHQJA0uO/+Kj11fZQoaAZoCWgPQwig4GJFDSVdQJSGlFKUaBVN6ANoFkdAkEFOwLVnVXV9lChoBmgJaA9DCPQY5ZmXAV9AlIaUUpRoFU3oA2gWR0CQQ0FaB7NTdX2UKGgGaAloD0MIyLYMOEt/X0CUhpRSlGgVTegDaBZHQJBgEgSvkil1fZQoaAZoCWgPQwiBd/LpMf5gQJSGlFKUaBVN6ANoFkdAkGUDWoWHlHV9lChoBmgJaA9DCKClK9hGkmFAlIaUUpRoFU3oA2gWR0CQZdq+JxecdX2UKGgGaAloD0MI3nGKjuTYX0CUhpRSlGgVTegDaBZHQJBnIfOlfqp1fZQoaAZoCWgPQwjByMua2KlhQJSGlFKUaBVN6ANoFkdAkHCcYVIqb3V9lChoBmgJaA9DCFacai0MBXBAlIaUUpRoFU3RA2gWR0CQcdSZ0CA+dX2UKGgGaAloD0MINA9gkV8pXkCUhpRSlGgVTegDaBZHQJByQzqKP4p1fZQoaAZoCWgPQwjylqsfm/BgQJSGlFKUaBVN6ANoFkdAkHJUXpGFz3V9lChoBmgJaA9DCF03pbxWumVAlIaUUpRoFU3oA2gWR0CQcpTVlPJrdX2UKGgGaAloD0MIZKw2/6+iX0CUhpRSlGgVTegDaBZHQJBzxWluWKN1fZQoaAZoCWgPQwi7tUyGYx9gQJSGlFKUaBVN6ANoFkdAkHfb/wRXfnV9lChoBmgJaA9DCPEO8KSFcyLAlIaUUpRoFU05AWgWR0CQePYYzi0fdX2UKGgGaAloD0MITmN7LeiHYkCUhpRSlGgVTegDaBZHQJB9aJ0nw5N1fZQoaAZoCWgPQwhpVUs6SiZjQJSGlFKUaBVN6ANoFkdAkIdemzjWCnV9lChoBmgJaA9DCIlgHFw6ykJAlIaUUpRoFU0JAWgWR0CQiZ5fdAPedX2UKGgGaAloD0MItcNfkzXiY0CUhpRSlGgVTegDaBZHQJCKsw5/9YR1fZQoaAZoCWgPQwiyutVz0iliQJSGlFKUaBVN6ANoFkdAkJZd3jdYXHV9lChoBmgJaA9DCBa+vtYl+WNAlIaUUpRoFU3oA2gWR0CQmCIczZYgdX2UKGgGaAloD0MIdOygEtcuY0CUhpRSlGgVTegDaBZHQJC0F4/u9e11fZQoaAZoCWgPQwh2VDVB1INZQJSGlFKUaBVN6ANoFkdAkLlS/bj943V9lChoBmgJaA9DCGEXRQ98RVtAlIaUUpRoFU3oA2gWR0CQupV3Ux20dX2UKGgGaAloD0MI648wDNhTYkCUhpRSlGgVTegDaBZHQJDDnfHggox1fZQoaAZoCWgPQwjU78LWbMdaQJSGlFKUaBVN6ANoFkdAkMTZJf6XSnV9lChoBmgJaA9DCNCX3v5cOV9AlIaUUpRoFU3oA2gWR0CQxURCQcPwdX2UKGgGaAloD0MIZD+LpUioX0CUhpRSlGgVTegDaBZHQJDFUtL+PzZ1fZQoaAZoCWgPQwh2Gf7TDUJbQJSGlFKUaBVN6ANoFkdAkMWQla8pTnV9lChoBmgJaA9DCJpeYizTo2BAlIaUUpRoFU3oA2gWR0CQxsG34Kx+dX2UKGgGaAloD0MI8kI6PIQsXUCUhpRSlGgVTegDaBZHQJDKwcm0E5h1fZQoaAZoCWgPQwjbNSGtMQFgQJSGlFKUaBVN6ANoFkdAkNCWq1gH/3V9lChoBmgJaA9DCKpjldIzZltAlIaUUpRoFU3oA2gWR0CQ2qvSMLncdX2UKGgGaAloD0MI7BLVWwMUYkCUhpRSlGgVTegDaBZHQJDcqmMwUQF1fZQoaAZoCWgPQwgbuAN1ypBkQJSGlFKUaBVN6ANoFkdAkN2jn/1g6XV9lChoBmgJaA9DCAgDz70HyWJAlIaUUpRoFU3oA2gWR0CQ6N1uzhP1dX2UKGgGaAloD0MIVoLF4cyiZUCUhpRSlGgVTegDaBZHQJDqoNd7fHh1fZQoaAZoCWgPQwi2v7M9erJXQJSGlFKUaBVN6ANoFkdAkPQ6nR9gGHV9lChoBmgJaA9DCBbD1QEQpULAlIaUUpRoFUveaBZHQJEKWZssQNF1fZQoaAZoCWgPQwhgcqPIWt9lQJSGlFKUaBVN6ANoFkdAkQwIhyKekHV9lChoBmgJaA9DCA3hmGVP8V1AlIaUUpRoFU3oA2gWR0CRDSgctGutdX2UKGgGaAloD0MIn+dPG9WVXUCUhpRSlGgVTegDaBZHQJEVRScbzbx1fZQoaAZoCWgPQwg3GVWGccVXQJSGlFKUaBVN6ANoFkdAkRZTAN5MUXV9lChoBmgJaA9DCGe3lslw1WNAlIaUUpRoFU3oA2gWR0CRFrBKcurZdX2UKGgGaAloD0MIDLH6I4w7ZUCUhpRSlGgVTegDaBZHQJEWvCiyprF1fZQoaAZoCWgPQwjbaWtEsMFiQJSGlFKUaBVN6ANoFkdAkRbyl7+kxnV9lChoBmgJaA9DCJ6ymq4nl2FAlIaUUpRoFU3oA2gWR0CRF+5e7cwhdX2UKGgGaAloD0MIaeGyChuCYECUhpRSlGgVTegDaBZHQJEbTlQuVX51fZQoaAZoCWgPQwjfwORGkWZfQJSGlFKUaBVN6ANoFkdAkSAK8L8aXXV9lChoBmgJaA9DCHRfzmxXmERAlIaUUpRoFU0RAWgWR0CRI8LQokRjdX2UKGgGaAloD0MIhnXj3ZG6XECUhpRSlGgVTegDaBZHQJEoUF/x2B91fZQoaAZoCWgPQwjnHDwTGkZkQJSGlFKUaBVN6ANoFkdAkSoH8wYcenV9lChoBmgJaA9DCMAlAP+UaGRAlIaUUpRoFU3oA2gWR0CRKuEsrd30dX2UKGgGaAloD0MIIQN5dnkOYECUhpRSlGgVTegDaBZHQJE2afNA1Nx1fZQoaAZoCWgPQwgKZkzBGt87QJSGlFKUaBVNCgFoFkdAkTrEpy6tknV9lChoBmgJaA9DCLMngc05+V1AlIaUUpRoFU3oA2gWR0CRP3tTkyULdX2UKGgGaAloD0MI8fCeA8s9YkCUhpRSlGgVTegDaBZHQJFWc4ACGN91fZQoaAZoCWgPQwjQKF36l+lhQJSGlFKUaBVN6ANoFkdAkVgrMHKOk3V9lChoBmgJaA9DCJzhBnz+B2BAlIaUUpRoFU3oA2gWR0CRWV7dznzQdX2UKGgGaAloD0MI4NkeveFqXECUhpRSlGgVTegDaBZHQJFiXTnaFmF1fZQoaAZoCWgPQwjYfcfwWP1jQJSGlFKUaBVN6ANoFkdAkWOZWq94/3V9lChoBmgJaA9DCPa0w18TuGRAlIaUUpRoFU3oA2gWR0CRZAseGO+7dX2UKGgGaAloD0MIHZJaKJnlWkCUhpRSlGgVTegDaBZHQJFkXWWhRIl1fZQoaAZoCWgPQwiD+pY5XVJfQJSGlFKUaBVN6ANoFkdAkWWY0VJti3V9lChoBmgJaA9DCJj2zf3V0V1AlIaUUpRoFU3oA2gWR0CRabdQfp2VdX2UKGgGaAloD0MIl5APejZrFsCUhpRSlGgVTSEBaBZHQJFqK5WilBR1fZQoaAZoCWgPQwieI/JdyuVlQJSGlFKUaBVN6ANoFkdAkW8SrT6SDHV9lChoBmgJaA9DCJP98zRgrFpAlIaUUpRoFU3oA2gWR0CRc0WHUMG5dX2UKGgGaAloD0MIKLou/GAEYECUhpRSlGgVTegDaBZHQJF4Kq94/u91fZQoaAZoCWgPQwjLngQ255RiQJSGlFKUaBVN6ANoFkdAkXoGSQo1DXV9lChoBmgJaA9DCBNkBFQ4XlpAlIaUUpRoFU3oA2gWR0CRiDcyWRigdX2UKGgGaAloD0MIbwwBwDGjYECUhpRSlGgVTegDaBZHQJGM2Bas6q91fZQoaAZoCWgPQwidgZGXNZlhQJSGlFKUaBVN6ANoFkdAkZGQNkOI7HV9lChoBmgJaA9DCI48EFmkI19AlIaUUpRoFU3oA2gWR0CRp4dNnGsFdX2UKGgGaAloD0MIObnfoSjAYkCUhpRSlGgVTegDaBZHQJGqTHAAQxx1fZQoaAZoCWgPQwha1ZKOcopjQJSGlFKUaBVN6ANoFkdAkbJVbJOnEXV9lChoBmgJaA9DCKZgjbNpqmJAlIaUUpRoFU3oA2gWR0CRs2+gUUO/dX2UKGgGaAloD0MIfc9IhEY0Y0CUhpRSlGgVTegDaBZHQJGzw/Rmbsp1fZQoaAZoCWgPQwiZLVkV4ZljQJSGlFKUaBVN6ANoFkdAkbQDWCmMwXV9lChoBmgJaA9DCNB9ObNdb2JAlIaUUpRoFU3oA2gWR0CRtRSP2f03dX2UKGgGaAloD0MI7gkS211KZECUhpRSlGgVTegDaBZHQJG41E8aGYd1fZQoaAZoCWgPQwg3pbxWwiJjQJSGlFKUaBVN6ANoFkdAkblDFuNxVHV9lChoBmgJaA9DCGCRXz/EfjtAlIaUUpRoFU1aAWgWR0CRur9vjwQUdX2UKGgGaAloD0MIBtUGJ6LgZECUhpRSlGgVTegDaBZHQJG9waCL/CJ1fZQoaAZoCWgPQwi/C1uzlUpZQJSGlFKUaBVN6ANoFkdAkcGWCuloDnV9lChoBmgJaA9DCKVpUDSPd2BAlIaUUpRoFU3oA2gWR0CRxlVZ9uxbdX2UKGgGaAloD0MIHy457pQpXECUhpRSlGgVTegDaBZHQJHIHMC9ytF1fZQoaAZoCWgPQwh6qkNuhlpbQJSGlFKUaBVN6ANoFkdAkdaUxM36ynV9lChoBmgJaA9DCDj4wmSqYWFAlIaUUpRoFU3oA2gWR0CR3DPvKEFodX2UKGgGaAloD0MIgCctXFacV0CUhpRSlGgVTegDaBZHQJHhMQxvegt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}