DeepRL-PPO-LLv2 / config.json
0x05a4's picture
Baseline: LR=3e-4/.996, epochs=2e6
678a575
raw
history blame
16 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f444c21f0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f444c21f170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f444c21f200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f444c21f290>", "_build": "<function ActorCriticPolicy._build at 0x7f444c21f320>", "forward": "<function ActorCriticPolicy.forward at 0x7f444c21f3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f444c21f440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f444c21f4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f444c21f560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f444c21f5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f444c21f680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f444c26b840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652552732.0074682, "learning_rate": {":type:": "<class '__main__.Scheduler'>", ":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc3MzUyNGEyZjdmNGU2Y2IxZGExMzdiMjY5NWE0MTOUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMjQtNGM5NDZlZGVjOGE3PpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/v987ZFocrhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPx0494YjwPJoIEc/7987ZFocrHViLg==", "learning_rate": 0.00011147509352205426, "decay": 0.996}, "tensorboard_log": null, "lr_schedule": {":type:": "<class '__main__.Scheduler'>", ":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc3MzUyNGEyZjdmNGU2Y2IxZGExMzdiMjY5NWE0MTOUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMjQtNGM5NDZlZGVjOGE3PpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/v987ZFocrhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPx0494YjwPJoIEc/7987ZFocrHViLg==", "learning_rate": 0.00011147509352205426, "decay": 0.996}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI07+b3dNro+O9A1PsnDoL6aahO91uyWPQAAAAAAAAAA2veuvYXqtLuwwcA8QADDumCQlDyZMEm+AACAPwAAgD+z5q09XFdpusVnL7pTCzO1EIYBu866STkAAAAAAAAAAFbPcr4QwM4+Tq6wPaQ/vr73+OO9QlY0vQAAAAAAAAAAmhnWOxtUzbx3TEU8BtdAvb++NL6IqhW+AACAPwAAgD+Ak8y9wXqmPd4Rij7vCSO+PB/mPLzPorwAAAAAAAAAAM30ljupPky8yiwbPbaQ/L0hCKG8SwiGvgAAgD8AAIA/M19APFw/AT4eReE97KW/vkxfiT3Oy8e9AAAAAAAAAAAzSeC8Aei4vKNfxT2h0bW8qsVXu+uZMr0AAIA/AACAP81UMr0pXHK6jIUOuolOoTSp6DC7t7IiOQAAgD8AAIA/miktu8Xp3zyz/ou9T4SAvumIjr2li009AAAAAAAAAAAzU8y6B4dVP/LoxL1jeMm+IKxCPaeGSrwAAAAAAAAAAGZkAD09Sgq7egjqvZoUsL6ZRhq95v8PvAAAgD8AAAAAQO7wPYA3rD9W0NM+7iu+vvkGgj6A4Dw+AAAAAAAAAADNiG08uo6pP/3qqj0FN+K+CJGNPd6yAD4AAAAAAAAAAACP97ykSwu7MBQ1vM1Ylzxr1xg8nm6CvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN1FLcytWcECUhpRSlIwBbJRL94wBdJRHQJ3CLZbpu/F1fZQoaAZoCWgPQwie7GZGP3xyQJSGlFKUaBVL82gWR0CdwlV5KODKdX2UKGgGaAloD0MI++WTFQM+cUCUhpRSlGgVS95oFkdAncKCOearm3V9lChoBmgJaA9DCAb3Ax6YgHJAlIaUUpRoFU1iAmgWR0Cdwp6nBLwndX2UKGgGaAloD0MIWkjA6PKDbkCUhpRSlGgVS8xoFkdAncKqcRUWEnV9lChoBmgJaA9DCCB/aVGf2HBAlIaUUpRoFUvyaBZHQJ3CtTOxB3R1fZQoaAZoCWgPQwjlRSbgF2d0QJSGlFKUaBVL32gWR0CdwuBVuJk5dX2UKGgGaAloD0MIxZJy9zlPcECUhpRSlGgVTREBaBZHQJ3DoiD/VAl1fZQoaAZoCWgPQwiRRgVOtipSQJSGlFKUaBVLumgWR0CdxEIhQm/ndX2UKGgGaAloD0MI7KS+LK27cUCUhpRSlGgVS9RoFkdAncSRgy/KyXV9lChoBmgJaA9DCEt4Qq9/XHFAlIaUUpRoFUvKaBZHQJ3HYAo5PuZ1fZQoaAZoCWgPQwhzg6EOK85wQJSGlFKUaBVL9mgWR0Cdx4hJRO1wdX2UKGgGaAloD0MIscHCSZrgbkCUhpRSlGgVS95oFkdAnceJHuqm0nV9lChoBmgJaA9DCJ0q3zMS6HFAlIaUUpRoFU0QAWgWR0Cdx5WEbo8qdX2UKGgGaAloD0MIwoU8ghvIUECUhpRSlGgVS9FoFkdAnce1ZHNHH3V9lChoBmgJaA9DCI//AkGAgnJAlIaUUpRoFU0dAWgWR0CdyCG5tm+TdX2UKGgGaAloD0MI3GPpQxdcc0CUhpRSlGgVS+BoFkdAncg6PKdQPHV9lChoBmgJaA9DCNzZVx4kcHJAlIaUUpRoFU0GAWgWR0CdyDtozvZzdX2UKGgGaAloD0MIfAxWnCrPcUCUhpRSlGgVS/5oFkdAnciWn4wh4nV9lChoBmgJaA9DCPiL2ZLVEHBAlIaUUpRoFUvzaBZHQJ3I41cdHUd1fZQoaAZoCWgPQwgBFCNLJqVyQJSGlFKUaBVNFgFoFkdAnckA9ic5KnV9lChoBmgJaA9DCALzkCnfZXJAlIaUUpRoFU0VAWgWR0CdyW1sLv1EdX2UKGgGaAloD0MIIv/MIH5ucUCUhpRSlGgVS9RoFkdAncmpeJHiFXV9lChoBmgJaA9DCFryeFp+lnBAlIaUUpRoFU0FAWgWR0Cdyg/Ot4iYdX2UKGgGaAloD0MIOGkaFE28cUCUhpRSlGgVS+doFkdAncpW4mTkhnV9lChoBmgJaA9DCJDBilOtqm9AlIaUUpRoFUvOaBZHQJ3MaULUkOZ1fZQoaAZoCWgPQwiU+x2KQkpyQJSGlFKUaBVL0WgWR0CdzH6/qPfbdX2UKGgGaAloD0MIqKrQQKxic0CUhpRSlGgVS/toFkdAnc2FtTDO1XV9lChoBmgJaA9DCE/KpIY2t3FAlIaUUpRoFUvlaBZHQJ3Nwb1h9b51fZQoaAZoCWgPQwheoKTAQsZxQJSGlFKUaBVL52gWR0CdzdCjDbaidX2UKGgGaAloD0MI6KG2DaMvckCUhpRSlGgVTQkBaBZHQJ3OOXa8HwB1fZQoaAZoCWgPQwgXgEbpUrZwQJSGlFKUaBVL42gWR0CdzndZq20BdX2UKGgGaAloD0MIxNLAj2q7cECUhpRSlGgVTQ0DaBZHQJ3Ohl05lvt1fZQoaAZoCWgPQwivmXyzTd9yQJSGlFKUaBVNDwFoFkdAnc7JDzAerHV9lChoBmgJaA9DCC+jWG5p7W9AlIaUUpRoFU03AWgWR0Cdz00xdpqRdX2UKGgGaAloD0MIigCnd/ExcUCUhpRSlGgVS+9oFkdAnc9fkWAPNHV9lChoBmgJaA9DCPOOU3Sk629AlIaUUpRoFUvRaBZHQJ3PYREnb7F1fZQoaAZoCWgPQwheRxyywQJyQJSGlFKUaBVNAwFoFkdAnc9xfOUt7XV9lChoBmgJaA9DCIdqSrKO83JAlIaUUpRoFU0bAWgWR0Cdz45xR2r5dX2UKGgGaAloD0MIMxgjEsWUckCUhpRSlGgVTQoBaBZHQJ3QKDRMN+d1fZQoaAZoCWgPQwgT1zGu+F9wQJSGlFKUaBVNHwFoFkdAneOiKrJbMXV9lChoBmgJaA9DCHmVtU1x9HFAlIaUUpRoFUvsaBZHQJ3kjtqpLmJ1fZQoaAZoCWgPQwjGUE606z5wQJSGlFKUaBVLx2gWR0Cd5I1KGtZFdX2UKGgGaAloD0MIEheARikKckCUhpRSlGgVTQEBaBZHQJ3k/OQhfSh1fZQoaAZoCWgPQwgqOSf20HBxQJSGlFKUaBVLxGgWR0Cd5UpZfUnYdX2UKGgGaAloD0MI/z9OmDCecUCUhpRSlGgVS+9oFkdAneW+4PPLPnV9lChoBmgJaA9DCA6GOqwwm3JAlIaUUpRoFUv1aBZHQJ3l1xbSqlx1fZQoaAZoCWgPQwji6gCIewdwQJSGlFKUaBVL5GgWR0Cd5dfukUKzdX2UKGgGaAloD0MIcvvlk9XNckCUhpRSlGgVS/RoFkdAneZzKHO8kHV9lChoBmgJaA9DCB6HwfzVWHBAlIaUUpRoFUvYaBZHQJ3mk4cWCVd1fZQoaAZoCWgPQwiSzyue+j1xQJSGlFKUaBVL52gWR0Cd5vbSqlxfdX2UKGgGaAloD0MIVvDbEONBbkCUhpRSlGgVS+VoFkdAnecN1IRRM3V9lChoBmgJaA9DCB8sY0O3aG5AlIaUUpRoFUv6aBZHQJ3nREWqLjx1fZQoaAZoCWgPQwhSfHxCth9yQJSGlFKUaBVL/WgWR0Cd6EglF+d9dX2UKGgGaAloD0MIhlYnZ6g+ckCUhpRSlGgVS+5oFkdAnelA2l2vCHV9lChoBmgJaA9DCCB7vftjFXNAlIaUUpRoFUvmaBZHQJ3qBzT4L1F1fZQoaAZoCWgPQwggKSLDKjZyQJSGlFKUaBVL6GgWR0Cd6hcpLEk0dX2UKGgGaAloD0MI529CIQJmMECUhpRSlGgVS7VoFkdAneorYGt6onV9lChoBmgJaA9DCJYH6SmyC3FAlIaUUpRoFUvXaBZHQJ3qb0kGA091fZQoaAZoCWgPQwix4H7Aw1pzQJSGlFKUaBVL1GgWR0Cd6tXYlIEsdX2UKGgGaAloD0MIdArys9EIckCUhpRSlGgVS9xoFkdAnesktVaOgnV9lChoBmgJaA9DCBgJbTmXBnNAlIaUUpRoFU0EAWgWR0Cd60AmReTndX2UKGgGaAloD0MIGcqJdhUab0CUhpRSlGgVS91oFkdAnewIZZSvT3V9lChoBmgJaA9DCMyWrIpwBG9AlIaUUpRoFUvkaBZHQJ3sFk4FRpF1fZQoaAZoCWgPQwhWZkrrbzdxQJSGlFKUaBVL/WgWR0Cd7WzeXRgJdX2UKGgGaAloD0MIAi1dwTaFckCUhpRSlGgVS/BoFkdAne18o2GZeHV9lChoBmgJaA9DCCtR9pbyyXFAlIaUUpRoFU0LAWgWR0Cd7fSyMUAUdX2UKGgGaAloD0MIog4r3LJgcUCUhpRSlGgVS/NoFkdAne7K0dBBzHV9lChoBmgJaA9DCB050hmYa25AlIaUUpRoFU0kAmgWR0Cd7y3WWhRJdX2UKGgGaAloD0MISPyKNVzjcUCUhpRSlGgVS9RoFkdAne/icoYvWnV9lChoBmgJaA9DCIj029cBTXNAlIaUUpRoFUv6aBZHQJ3w590A93d1fZQoaAZoCWgPQwjT25+Lhq9wQJSGlFKUaBVL/2gWR0Cd8QBMzuWsdX2UKGgGaAloD0MIXJAty1f4cUCUhpRSlGgVTYkCaBZHQJ3xWg/Tspp1fZQoaAZoCWgPQwjww0FC1L5yQJSGlFKUaBVL9mgWR0Cd8aqVQhwEdX2UKGgGaAloD0MIrOY5Il/TcUCUhpRSlGgVS+ZoFkdAnfKLqt5lfHV9lChoBmgJaA9DCH8V4LvNv3JAlIaUUpRoFUvtaBZHQJ3yshvBJqZ1fZQoaAZoCWgPQwhLj6Z6MihyQJSGlFKUaBVNFgFoFkdAnfLqraM72nV9lChoBmgJaA9DCIALsmV5GXBAlIaUUpRoFU0UAWgWR0Cd8vjFQ2uQdX2UKGgGaAloD0MIPiR872+Sb0CUhpRSlGgVS9doFkdAnfNpwjt5U3V9lChoBmgJaA9DCKPogY+BfnJAlIaUUpRoFU17AWgWR0Cd854MnZ00dX2UKGgGaAloD0MIvr9BezWZcUCUhpRSlGgVS+poFkdAnfRfoaDPGHV9lChoBmgJaA9DCOvIkc5AtW9AlIaUUpRoFU1uAWgWR0Cd9HooNNJwdX2UKGgGaAloD0MIvRqgNNStckCUhpRSlGgVTRgBaBZHQJ31DM2WIGh1fZQoaAZoCWgPQwjBAMKH0sVwQJSGlFKUaBVL8WgWR0Cd9TrOJLuhdX2UKGgGaAloD0MI0xQBTu+XckCUhpRSlGgVS+FoFkdAnfbU0Nz8xnV9lChoBmgJaA9DCPchb7n6WXFAlIaUUpRoFUvQaBZHQJ33AFt8/lh1fZQoaAZoCWgPQwj85ChAFKlwQJSGlFKUaBVL6GgWR0Cd91jBl+VkdX2UKGgGaAloD0MI1h2LbRI1cECUhpRSlGgVTQcBaBZHQJ33z/xUedV1fZQoaAZoCWgPQwizz2OUp6NwQJSGlFKUaBVNLwFoFkdAnffw5NoJzHV9lChoBmgJaA9DCA6/m24ZknFAlIaUUpRoFUvlaBZHQJ34bINmUW51fZQoaAZoCWgPQwi5UPnX8qdxQJSGlFKUaBVL62gWR0Cd+LIdlum8dX2UKGgGaAloD0MIkBK7trdEUECUhpRSlGgVS6toFkdAnfjJ6Y3Ns3V9lChoBmgJaA9DCE7QJoePDHBAlIaUUpRoFUvYaBZHQJ3440fozN51fZQoaAZoCWgPQwhbe5+qwtVvQJSGlFKUaBVL7GgWR0Cd+Ok5p8F7dX2UKGgGaAloD0MIIHnnUEaycUCUhpRSlGgVS/JoFkdAnfkR1klNUXV9lChoBmgJaA9DCBYUBmVaBnFAlIaUUpRoFUv3aBZHQJ35sytV7yB1fZQoaAZoCWgPQwiyf54GzJNyQJSGlFKUaBVL+GgWR0Cd+lZH/cWTdX2UKGgGaAloD0MITDPd66SYbUCUhpRSlGgVS91oFkdAnfqMOCoS+XV9lChoBmgJaA9DCOvhy0SRfHJAlIaUUpRoFUvSaBZHQJ37xdszl911fZQoaAZoCWgPQwhU5uYbUTNzQJSGlFKUaBVNJgFoFkdAnfwcFpwjuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}