0x05a4 commited on
Commit
ab2dd36
·
1 Parent(s): 678a575

Baseline: LR=5e-4/cosine-100, epochs=1e7/305

Browse files
LunarLander-v2-PPO-305.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f76381cdddbdc4bf15b06f43c6db8e5a817b07e1ad5c56f7021ca2d09672b28c
3
+ size 147375
LunarLander-v2-PPO-305/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
LunarLander-v2-PPO-305/data ADDED
@@ -0,0 +1,102 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84526fe7a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84526fe830>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84526fe8c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84526fe950>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f84526fe9e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f84526fea70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84526feb00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84526feb90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f84526fec20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84526fecb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84526fed40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84526fedd0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f84526fac40>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 7840000,
25
+ "_total_timesteps": 10000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1686892254355247090,
30
+ "learning_rate": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVVwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwyIAHwAZAETABQAUwCUTksChpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMS05N2IzN2ZmMTc0OTU+lIwNbGVhcm5pbmdfcmF0ZZRLE0MCDAGUjAdscl9pbml0lIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHH2UfZQoaBVoDYwMX19xdWFsbmFtZV9flIwtc3F1YXJlX2RlY2F5X3NjaGVkdWxlci48bG9jYWxzPi5sZWFybmluZ19yYXRllIwPX19hbm5vdGF0aW9uc19flH2UaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5RzjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
33
+ },
34
+ "tensorboard_log": null,
35
+ "_last_obs": {
36
+ ":type:": "<class 'numpy.ndarray'>",
37
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZNBb5A5Ig/tbPivkVKMr/ne3i+lWKzvgAAAAAAAAAAjVyIvsRF2j5JTRA+CVkjv0mc7L5mn14+AAAAAAAAAABNqi69KUAuugBysTukJUA4q1FNO7r4vrcAAAAAAACAPxrrlD3l2og/o1JaPu2vMr9UWZI9U5ylPQAAAAAAAAAAkwEWPp/11bsaJT87V6/wuC6OIb1QJ2q6AAAAAAAAAADNN7s8HFcZvPbBBb6JSRM74vh6vZ0AKDwAAIA/AACAP2a1V70496I/+4L1vrZuO7+cWLC80JtkvgAAAAAAAAAA82Pcvcp9gj9OcoC+2SI0v6MGjb5+Ll+9AAAAAAAAAAAz2OM8BPeoPs44Uz004uW+Lpb3PSP3RLsAAAAAAAAAAM0vEj32/Ei6OFQ6M/yofCuOxU27fFm9swAAgD8AAIA/miIvPrXvWj5+XAS/vOvPvgTSNb02vN+9AAAAAAAAAADmSVQ9lzSmPvhXoz2rSu6+Bb7+PaOD0jwAAAAAAAAAAGa9pD2PXlq6SHfFudL/zzUT5k+68Eo1tQAAAAAAAAAADauTvSzSNT+mvSI+phEYv1M11L1lSDY+AAAAAAAAAADmIAw+5oCIP1u9uD4SaDe/GUBtPk6sHT4AAAAAAAAAAM2RbD6QVno/b7QDP7peLr8dcL0+Mx5cPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
38
+ },
39
+ "_last_episode_starts": {
40
+ ":type:": "<class 'numpy.ndarray'>",
41
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
42
+ },
43
+ "_last_original_obs": null,
44
+ "_episode_num": 0,
45
+ "use_sde": false,
46
+ "sde_sample_freq": -1,
47
+ "_current_progress_remaining": 0.21684479999999995,
48
+ "_stats_window_size": 100,
49
+ "ep_info_buffer": {
50
+ ":type:": "<class 'collections.deque'>",
51
+ ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+PmCiAUcqMAWyUS8OMAXSUR0C6uTjqKP4mdX2UKGgGR0BxKDVRUFSsaAdLsmgIR0C6uT/8l5WzdX2UKGgGR0BzsbZJ04ipaAdLy2gIR0C6uUMchkiEdX2UKGgGR0Bx8ZZFG5MDaAdL52gIR0C6uUdYGMXKdX2UKGgGR0BzuxSCOFQEaAdLzGgIR0C6uVxUJfICdX2UKGgGR0BzgAoKD017aAdNHQFoCEdAurl7Llmvn3V9lChoBkdAcJDQkHD77GgHS8loCEdAurmMyXUpeHV9lChoBkdAcFI9h7Vrh2gHS8hoCEdAurnVlWfbsXV9lChoBkdAb+ldFfAsTWgHS81oCEdAurnlEAo5P3V9lChoBkdAcPJ5gPVd5mgHS8poCEdAurnstcv/R3V9lChoBkdAcvg9s7+1jWgHS91oCEdAuroTXoTwlXV9lChoBkdAcvgcsDnvD2gHS85oCEdAurox7v5P/XV9lChoBkdAc6Gmp2ll9WgHS8toCEdAurpHwx33YnV9lChoBkdAchuE4//vOWgHS6NoCEdAurpZHH3lCHV9lChoBkdAcRtnwob4rWgHS6poCEdAurpcZNwiq3V9lChoBkdAdD2Hww0wamgHS/RoCEdAurqi+M6zV3V9lChoBkdAc/S/GVAzHmgHS9loCEdAurq0wIt16nV9lChoBkdAct1WZJCjUWgHS+toCEdAurrCL/CIlHV9lChoBkdAb9IDGLk0amgHS8FoCEdAurrJUgjhUHV9lChoBkdAQ4gOvt+kQGgHS3VoCEdAurrgk8ifQXV9lChoBkdAcs9GtITXa2gHS+loCEdAurrqvA44qHV9lChoBkdAbz2Z4wAU+WgHS7poCEdAursaj1wo9nV9lChoBkdAck2EX+ERJ2gHS+hoCEdAurseLOzIFXV9lChoBkdAb+QMmWt2cWgHS7doCEdAurslPYWcjXV9lChoBkdAcpWZ0Syt3mgHTTUBaAhHQLq7SP8AJcB1fZQoaAZHQHCNIUnG829oB0vUaAhHQLq7XNsnAqN1fZQoaAZHQHFjJoGpuMxoB0vEaAhHQLq7gfNA1Nx1fZQoaAZHQHFLk6cRUWFoB0vJaAhHQLq7nxc3VCp1fZQoaAZHQHDyX6l+EytoB0u+aAhHQLq7onWrfch1fZQoaAZHQFQTazeGfwtoB0uOaAhHQLq7sGTLW7R1fZQoaAZHQGb+/4ZdfLNoB03oA2gIR0C6u94f8uSPdX2UKGgGR0BzmzJA+pwTaAdL7WgIR0C6u+2Lgn+idX2UKGgGR0BxcTQKKHfuaAdLvmgIR0C6u/LIxQBQdX2UKGgGR0BwnM3zcynDaAdLxmgIR0C6vA+O801qdX2UKGgGR0BxWyuB+WnkaAdL4GgIR0C6vBYvvjOtdX2UKGgGR0ByWDDjzZpSaAdLxWgIR0C6vCEhePaMdX2UKGgGR0ByOoh5gPVeaAdL0mgIR0C6vEAFC9h7dX2UKGgGR0BxyBs/IKc/aAdLtmgIR0C6vEbJW/8EdX2UKGgGR0BzXYaIeo1laAdLuGgIR0C6vEWVAzHkdX2UKGgGR0BwaDvTgEU1aAdLzGgIR0C6vF/pdKNAdX2UKGgGR0ByCpqQA+6iaAdL0GgIR0C6vIxi9ZiedX2UKGgGR0Bxkmu5jH4oaAdLu2gIR0C6vKAumJm/dX2UKGgGR0BzSd8CxNZeaAdL2WgIR0C6vK2vr4WUdX2UKGgGR0Bx7ncJtzjnaAdLx2gIR0C6vNC6H0sfdX2UKGgGR0BBOGhmGucMaAdLoGgIR0C6vN/YSQHSdX2UKGgGR0BwFYPTXrdFaAdL0WgIR0C6vSK06YE4dX2UKGgGR0BzAAqnWJ7+aAdLsmgIR0C6vSVA3T/idX2UKGgGR0BxchCngpBpaAdL8mgIR0C6vSpQ+EAYdX2UKGgGR0BBBFWwNb1RaAdLhWgIR0C6vTVZs9B9dX2UKGgGR0BwRCh11W8zaAdL0GgIR0C6vTjd56dEdX2UKGgGR0BxV7D/EOy3aAdLxWgIR0C6vXc3EQ5FdX2UKGgGR0BxQEood+5OaAdLzWgIR0C6vY145cTrdX2UKGgGR0ByMpfNRm9QaAdLtGgIR0C6vby35N48dX2UKGgGR0Bx1f8/D+BIaAdLuWgIR0C6vfJGSZBtdX2UKGgGR0By0dB6a9bpaAdNHgFoCEdAur30q/dqL3V9lChoBkdAci4cUuctoWgHTQMBaAhHQLq9/DRc/t91fZQoaAZHQHEhClN1yNpoB0vNaAhHQLq+CMLncL11fZQoaAZHQHLsJp8F6iVoB0vBaAhHQLq+KnGsFMZ1fZQoaAZHQHGphMajveBoB0u4aAhHQLq+KUnG8291fZQoaAZHQHCdoM4LkS5oB0uwaAhHQLq+WVea8Yh1fZQoaAZHQHDeVK02LpBoB0vMaAhHQLrEjDaGpMp1fZQoaAZHQHBtp8fFJg9oB0vEaAhHQLrEi3Y+Sr51fZQoaAZHQHFFkSdvsJJoB0v4aAhHQLrE2Oymhuh1fZQoaAZHQHF2IqLCN0hoB0vEaAhHQLrE7Gd7OVx1fZQoaAZHQHJlZLIxQBRoB0vjaAhHQLrFDwx33Yd1fZQoaAZHQHLYtgBtDUpoB00QAWgIR0C6xRKN+9amdX2UKGgGR0BwVXeBQN1AaAdLyWgIR0C6xR7jkuHvdX2UKGgGR0ByPcVh1DBuaAdNHAJoCEdAusUonDziCXV9lChoBkdAcTUv24/eL2gHS8RoCEdAusVEfKZDzHV9lChoBkdAc766f8MuvmgHTdwBaAhHQLrFRivxH5J1fZQoaAZHQG+J7HyVfNRoB0u8aAhHQLrFS05lvqF1fZQoaAZHQHHNa3AmAsloB0utaAhHQLrFTaSs8xN1fZQoaAZHQHEtpC4SYgJoB0vWaAhHQLrFZrTYukF1fZQoaAZHQHHsqNlyzX1oB0vOaAhHQLrFgKhtcfN1fZQoaAZHQHFGnyd4FA5oB0vZaAhHQLrFxzpHI6t1fZQoaAZHQHCXUAggX/JoB0u9aAhHQLrFztTUAkt1fZQoaAZHQHCesAmzByloB0vCaAhHQLrF1QSSNfh1fZQoaAZHQDw607bL2YhoB0tgaAhHQLrF3X9itq51fZQoaAZHQFKvY4ACGN9oB0uSaAhHQLrF3I42jwh1fZQoaAZHQG/MD1XeWOZoB0vKaAhHQLrGIxvNu+B1fZQoaAZHQHF3OYD1XeZoB0u3aAhHQLrGOYK6WgR1fZQoaAZHQHLEmZ3LV4JoB0vRaAhHQLrGcLU1AJN1fZQoaAZHQHG+mNNrTH9oB0vTaAhHQLrGffVqesh1fZQoaAZHQHM4l6/qPfdoB0vFaAhHQLrGhWAPNFB1fZQoaAZHQHHcyVKPGQ1oB0vMaAhHQLrGl6Tnq3V1fZQoaAZHQHG6E0rK/21oB0uvaAhHQLrGopTuOS51fZQoaAZHQHEAo+KTB69oB0vOaAhHQLrGtaoddVx1fZQoaAZHQHGy20/nnuBoB0vpaAhHQLrGxhePaL51fZQoaAZHQHBEd+kP+XJoB0vEaAhHQLrHDUvf0mN1fZQoaAZHQHI+MoH9m6JoB0vKaAhHQLrHIFtsN2F1fZQoaAZHQHNVkknkT6BoB0vFaAhHQLrHH52Qnx91fZQoaAZHQHIgiKziS7poB0vOaAhHQLrHN5f+jud1fZQoaAZHQEeyMd92HL1oB0tsaAhHQLrHWukDZDl1fZQoaAZHQHGfzRplBhRoB0u2aAhHQLrHdjynUDx1fZQoaAZHQHCXpDzAeq9oB0uxaAhHQLrHqQemvW91fZQoaAZHQFLDcJdB0IVoB0uKaAhHQLrHrH3Dej51fZQoaAZHQHLw1DfFaStoB0vkaAhHQLrHs5NXYDl1fZQoaAZHQDp/bVSXMQpoB0usaAhHQLrHto1k1/F1fZQoaAZHQD//iqABkqdoB0tjaAhHQLrHwOLBKth1fZQoaAZHQHK/RGx2SuBoB0vCaAhHQLrH1z4UN8V1ZS4="
52
+ },
53
+ "ep_success_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
56
+ },
57
+ "_n_updates": 1912,
58
+ "observation_space": {
59
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
60
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
61
+ "dtype": "float32",
62
+ "bounded_below": "[ True True True True True True True True]",
63
+ "bounded_above": "[ True True True True True True True True]",
64
+ "_shape": [
65
+ 8
66
+ ],
67
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
68
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
69
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
70
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
71
+ "_np_random": null
72
+ },
73
+ "action_space": {
74
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
75
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
76
+ "n": "4",
77
+ "start": "0",
78
+ "_shape": [],
79
+ "dtype": "int64",
80
+ "_np_random": null
81
+ },
82
+ "n_envs": 16,
83
+ "n_steps": 1024,
84
+ "gamma": 0.999,
85
+ "gae_lambda": 0.98,
86
+ "ent_coef": 0.01,
87
+ "vf_coef": 0.5,
88
+ "max_grad_norm": 0.5,
89
+ "batch_size": 64,
90
+ "n_epochs": 4,
91
+ "clip_range": {
92
+ ":type:": "<class 'function'>",
93
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
94
+ },
95
+ "clip_range_vf": null,
96
+ "normalize_advantage": true,
97
+ "target_kl": null,
98
+ "lr_schedule": {
99
+ ":type:": "<class 'function'>",
100
+ ":serialized:": "gAWVVwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwyIAHwAZAETABQAUwCUTksChpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMS05N2IzN2ZmMTc0OTU+lIwNbGVhcm5pbmdfcmF0ZZRLE0MCDAGUjAdscl9pbml0lIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHH2UfZQoaBVoDYwMX19xdWFsbmFtZV9flIwtc3F1YXJlX2RlY2F5X3NjaGVkdWxlci48bG9jYWxzPi5sZWFybmluZ19yYXRllIwPX19hbm5vdGF0aW9uc19flH2UaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5RzjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
101
+ }
102
+ }
LunarLander-v2-PPO-305/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:884d5ab91d84422c16026442237ca826602e8f0a2ae32620ea787c72ccaa7bf4
3
+ size 87929
LunarLander-v2-PPO-305/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24d929fa74b576be35b834e009c053d77b04f233220d23426541d7e309f9da9e
3
+ size 43329
LunarLander-v2-PPO-305/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
LunarLander-v2-PPO-305/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
README.md CHANGED
@@ -8,21 +8,30 @@ tags:
8
  model-index:
9
  - name: PPO
10
  results:
11
- - metrics:
12
- - type: mean_reward
13
- value: 286.26 +/- 16.68
14
- name: mean_reward
15
- task:
16
  type: reinforcement-learning
17
  name: reinforcement-learning
18
  dataset:
19
  name: LunarLander-v2
20
  type: LunarLander-v2
 
 
 
 
 
21
  ---
22
 
23
- # **PPO** Agent playing **LunarLander-v2**
24
- This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
-
26
- ## Usage (with Stable-baselines3)
27
- TODO: Add your code
28
-
 
 
 
 
 
 
 
 
 
8
  model-index:
9
  - name: PPO
10
  results:
11
+ - task:
 
 
 
 
12
  type: reinforcement-learning
13
  name: reinforcement-learning
14
  dataset:
15
  name: LunarLander-v2
16
  type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 288.91 +/- 10.97
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
 
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f444c21f0e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f444c21f170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f444c21f200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f444c21f290>", "_build": "<function ActorCriticPolicy._build at 0x7f444c21f320>", "forward": "<function ActorCriticPolicy.forward at 0x7f444c21f3b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f444c21f440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f444c21f4d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f444c21f560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f444c21f5f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f444c21f680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f444c26b840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652552732.0074682, "learning_rate": {":type:": "<class '__main__.Scheduler'>", ":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc3MzUyNGEyZjdmNGU2Y2IxZGExMzdiMjY5NWE0MTOUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMjQtNGM5NDZlZGVjOGE3PpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/v987ZFocrhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPx0494YjwPJoIEc/7987ZFocrHViLg==", "learning_rate": 0.00011147509352205426, "decay": 0.996}, "tensorboard_log": null, "lr_schedule": {":type:": "<class '__main__.Scheduler'>", ":serialized:": "gAWVgwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwUX21ha2Vfc2tlbGV0b25fY2xhc3OUk5QojAhidWlsdGluc5SMBHR5cGWUk5SMCVNjaGVkdWxlcpRoA4wGb2JqZWN0lJOUhZR9lIwgOTc3MzUyNGEyZjdmNGU2Y2IxZGExMzdiMjY5NWE0MTOUTnSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjA9fY2xhc3Nfc2V0c3RhdGWUk5RoDX2UKIwKX19tb2R1bGVfX5SMCF9fbWFpbl9flIwIX19pbml0X1+UaACMDV9idWlsdGluX3R5cGWUk5SMCkxhbWJkYVR5cGWUhZRSlChoFowIQ29kZVR5cGWUhZRSlChLA0sASwNLAktDQxB8AXwAXwB8AnwAXwFkAFMAlE6FlIwNbGVhcm5pbmdfcmF0ZZSMBWRlY2F5lIaUjARzZWxmlGgfaCCHlIwfPGlweXRob24taW5wdXQtMjQtNGM5NDZlZGVjOGE3PpRoFEsCQwQAAQYBlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UaBN1Tk5OdJRSlGgOjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoLH2UfZQoaCpoFIwMX19xdWFsbmFtZV9flIwSU2NoZWR1bGVyLl9faW5pdF9flIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+URz8zqSowVTJhRz/v987ZFocrhpRoEmgTjAdfX2RvY19flE6MC19fY2xvc3VyZV9flE6MF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMIwIX19jYWxsX1+UaBkoaBwoSwJLAEsCSwNLQ0MWfAAEAGoAfABqATkAAgBfAHwAagBTAJROhZRoH2gghpRoImgfhpRoJGg/SwZDBAABEAGUKSl0lFKUaChOTk50lFKUaC5oSH2UfZQoaCpoP2gxjBJTY2hlZHVsZXIuX19jYWxsX1+UaDN9lGg1Tmg2TmgSaBNoOE5oOU5oOl2UaDx9lHWGlIZSMGg4TowNX19zbG90bmFtZXNfX5RdlHV9lIaUhlIwKYGUfZQoaB9HPx0494YjwPJoIEc/7987ZFocrHViLg==", "learning_rate": 0.00011147509352205426, "decay": 0.996}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAI07+b3dNro+O9A1PsnDoL6aahO91uyWPQAAAAAAAAAA2veuvYXqtLuwwcA8QADDumCQlDyZMEm+AACAPwAAgD+z5q09XFdpusVnL7pTCzO1EIYBu866STkAAAAAAAAAAFbPcr4QwM4+Tq6wPaQ/vr73+OO9QlY0vQAAAAAAAAAAmhnWOxtUzbx3TEU8BtdAvb++NL6IqhW+AACAPwAAgD+Ak8y9wXqmPd4Rij7vCSO+PB/mPLzPorwAAAAAAAAAAM30ljupPky8yiwbPbaQ/L0hCKG8SwiGvgAAgD8AAIA/M19APFw/AT4eReE97KW/vkxfiT3Oy8e9AAAAAAAAAAAzSeC8Aei4vKNfxT2h0bW8qsVXu+uZMr0AAIA/AACAP81UMr0pXHK6jIUOuolOoTSp6DC7t7IiOQAAgD8AAIA/miktu8Xp3zyz/ou9T4SAvumIjr2li009AAAAAAAAAAAzU8y6B4dVP/LoxL1jeMm+IKxCPaeGSrwAAAAAAAAAAGZkAD09Sgq7egjqvZoUsL6ZRhq95v8PvAAAgD8AAAAAQO7wPYA3rD9W0NM+7iu+vvkGgj6A4Dw+AAAAAAAAAADNiG08uo6pP/3qqj0FN+K+CJGNPd6yAD4AAAAAAAAAAACP97ykSwu7MBQ1vM1Ylzxr1xg8nm6CvQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN1FLcytWcECUhpRSlIwBbJRL94wBdJRHQJ3CLZbpu/F1fZQoaAZoCWgPQwie7GZGP3xyQJSGlFKUaBVL82gWR0CdwlV5KODKdX2UKGgGaAloD0MI++WTFQM+cUCUhpRSlGgVS95oFkdAncKCOearm3V9lChoBmgJaA9DCAb3Ax6YgHJAlIaUUpRoFU1iAmgWR0Cdwp6nBLwndX2UKGgGaAloD0MIWkjA6PKDbkCUhpRSlGgVS8xoFkdAncKqcRUWEnV9lChoBmgJaA9DCCB/aVGf2HBAlIaUUpRoFUvyaBZHQJ3CtTOxB3R1fZQoaAZoCWgPQwjlRSbgF2d0QJSGlFKUaBVL32gWR0CdwuBVuJk5dX2UKGgGaAloD0MIxZJy9zlPcECUhpRSlGgVTREBaBZHQJ3DoiD/VAl1fZQoaAZoCWgPQwiRRgVOtipSQJSGlFKUaBVLumgWR0CdxEIhQm/ndX2UKGgGaAloD0MI7KS+LK27cUCUhpRSlGgVS9RoFkdAncSRgy/KyXV9lChoBmgJaA9DCEt4Qq9/XHFAlIaUUpRoFUvKaBZHQJ3HYAo5PuZ1fZQoaAZoCWgPQwhzg6EOK85wQJSGlFKUaBVL9mgWR0Cdx4hJRO1wdX2UKGgGaAloD0MIscHCSZrgbkCUhpRSlGgVS95oFkdAnceJHuqm0nV9lChoBmgJaA9DCJ0q3zMS6HFAlIaUUpRoFU0QAWgWR0Cdx5WEbo8qdX2UKGgGaAloD0MIwoU8ghvIUECUhpRSlGgVS9FoFkdAnce1ZHNHH3V9lChoBmgJaA9DCI//AkGAgnJAlIaUUpRoFU0dAWgWR0CdyCG5tm+TdX2UKGgGaAloD0MI3GPpQxdcc0CUhpRSlGgVS+BoFkdAncg6PKdQPHV9lChoBmgJaA9DCNzZVx4kcHJAlIaUUpRoFU0GAWgWR0CdyDtozvZzdX2UKGgGaAloD0MIfAxWnCrPcUCUhpRSlGgVS/5oFkdAnciWn4wh4nV9lChoBmgJaA9DCPiL2ZLVEHBAlIaUUpRoFUvzaBZHQJ3I41cdHUd1fZQoaAZoCWgPQwgBFCNLJqVyQJSGlFKUaBVNFgFoFkdAnckA9ic5KnV9lChoBmgJaA9DCALzkCnfZXJAlIaUUpRoFU0VAWgWR0CdyW1sLv1EdX2UKGgGaAloD0MIIv/MIH5ucUCUhpRSlGgVS9RoFkdAncmpeJHiFXV9lChoBmgJaA9DCFryeFp+lnBAlIaUUpRoFU0FAWgWR0Cdyg/Ot4iYdX2UKGgGaAloD0MIOGkaFE28cUCUhpRSlGgVS+doFkdAncpW4mTkhnV9lChoBmgJaA9DCJDBilOtqm9AlIaUUpRoFUvOaBZHQJ3MaULUkOZ1fZQoaAZoCWgPQwiU+x2KQkpyQJSGlFKUaBVL0WgWR0CdzH6/qPfbdX2UKGgGaAloD0MIqKrQQKxic0CUhpRSlGgVS/toFkdAnc2FtTDO1XV9lChoBmgJaA9DCE/KpIY2t3FAlIaUUpRoFUvlaBZHQJ3Nwb1h9b51fZQoaAZoCWgPQwheoKTAQsZxQJSGlFKUaBVL52gWR0CdzdCjDbaidX2UKGgGaAloD0MI6KG2DaMvckCUhpRSlGgVTQkBaBZHQJ3OOXa8HwB1fZQoaAZoCWgPQwgXgEbpUrZwQJSGlFKUaBVL42gWR0CdzndZq20BdX2UKGgGaAloD0MIxNLAj2q7cECUhpRSlGgVTQ0DaBZHQJ3Ohl05lvt1fZQoaAZoCWgPQwivmXyzTd9yQJSGlFKUaBVNDwFoFkdAnc7JDzAerHV9lChoBmgJaA9DCC+jWG5p7W9AlIaUUpRoFU03AWgWR0Cdz00xdpqRdX2UKGgGaAloD0MIigCnd/ExcUCUhpRSlGgVS+9oFkdAnc9fkWAPNHV9lChoBmgJaA9DCPOOU3Sk629AlIaUUpRoFUvRaBZHQJ3PYREnb7F1fZQoaAZoCWgPQwheRxyywQJyQJSGlFKUaBVNAwFoFkdAnc9xfOUt7XV9lChoBmgJaA9DCIdqSrKO83JAlIaUUpRoFU0bAWgWR0Cdz45xR2r5dX2UKGgGaAloD0MIMxgjEsWUckCUhpRSlGgVTQoBaBZHQJ3QKDRMN+d1fZQoaAZoCWgPQwgT1zGu+F9wQJSGlFKUaBVNHwFoFkdAneOiKrJbMXV9lChoBmgJaA9DCHmVtU1x9HFAlIaUUpRoFUvsaBZHQJ3kjtqpLmJ1fZQoaAZoCWgPQwjGUE606z5wQJSGlFKUaBVLx2gWR0Cd5I1KGtZFdX2UKGgGaAloD0MIEheARikKckCUhpRSlGgVTQEBaBZHQJ3k/OQhfSh1fZQoaAZoCWgPQwgqOSf20HBxQJSGlFKUaBVLxGgWR0Cd5UpZfUnYdX2UKGgGaAloD0MI/z9OmDCecUCUhpRSlGgVS+9oFkdAneW+4PPLPnV9lChoBmgJaA9DCA6GOqwwm3JAlIaUUpRoFUv1aBZHQJ3l1xbSqlx1fZQoaAZoCWgPQwji6gCIewdwQJSGlFKUaBVL5GgWR0Cd5dfukUKzdX2UKGgGaAloD0MIcvvlk9XNckCUhpRSlGgVS/RoFkdAneZzKHO8kHV9lChoBmgJaA9DCB6HwfzVWHBAlIaUUpRoFUvYaBZHQJ3mk4cWCVd1fZQoaAZoCWgPQwiSzyue+j1xQJSGlFKUaBVL52gWR0Cd5vbSqlxfdX2UKGgGaAloD0MIVvDbEONBbkCUhpRSlGgVS+VoFkdAnecN1IRRM3V9lChoBmgJaA9DCB8sY0O3aG5AlIaUUpRoFUv6aBZHQJ3nREWqLjx1fZQoaAZoCWgPQwhSfHxCth9yQJSGlFKUaBVL/WgWR0Cd6EglF+d9dX2UKGgGaAloD0MIhlYnZ6g+ckCUhpRSlGgVS+5oFkdAnelA2l2vCHV9lChoBmgJaA9DCCB7vftjFXNAlIaUUpRoFUvmaBZHQJ3qBzT4L1F1fZQoaAZoCWgPQwggKSLDKjZyQJSGlFKUaBVL6GgWR0Cd6hcpLEk0dX2UKGgGaAloD0MI529CIQJmMECUhpRSlGgVS7VoFkdAneorYGt6onV9lChoBmgJaA9DCJYH6SmyC3FAlIaUUpRoFUvXaBZHQJ3qb0kGA091fZQoaAZoCWgPQwix4H7Aw1pzQJSGlFKUaBVL1GgWR0Cd6tXYlIEsdX2UKGgGaAloD0MIdArys9EIckCUhpRSlGgVS9xoFkdAnesktVaOgnV9lChoBmgJaA9DCBgJbTmXBnNAlIaUUpRoFU0EAWgWR0Cd60AmReTndX2UKGgGaAloD0MIGcqJdhUab0CUhpRSlGgVS91oFkdAnewIZZSvT3V9lChoBmgJaA9DCMyWrIpwBG9AlIaUUpRoFUvkaBZHQJ3sFk4FRpF1fZQoaAZoCWgPQwhWZkrrbzdxQJSGlFKUaBVL/WgWR0Cd7WzeXRgJdX2UKGgGaAloD0MIAi1dwTaFckCUhpRSlGgVS/BoFkdAne18o2GZeHV9lChoBmgJaA9DCCtR9pbyyXFAlIaUUpRoFU0LAWgWR0Cd7fSyMUAUdX2UKGgGaAloD0MIog4r3LJgcUCUhpRSlGgVS/NoFkdAne7K0dBBzHV9lChoBmgJaA9DCB050hmYa25AlIaUUpRoFU0kAmgWR0Cd7y3WWhRJdX2UKGgGaAloD0MISPyKNVzjcUCUhpRSlGgVS9RoFkdAne/icoYvWnV9lChoBmgJaA9DCIj029cBTXNAlIaUUpRoFUv6aBZHQJ3w590A93d1fZQoaAZoCWgPQwjT25+Lhq9wQJSGlFKUaBVL/2gWR0Cd8QBMzuWsdX2UKGgGaAloD0MIXJAty1f4cUCUhpRSlGgVTYkCaBZHQJ3xWg/Tspp1fZQoaAZoCWgPQwjww0FC1L5yQJSGlFKUaBVL9mgWR0Cd8aqVQhwEdX2UKGgGaAloD0MIrOY5Il/TcUCUhpRSlGgVS+ZoFkdAnfKLqt5lfHV9lChoBmgJaA9DCH8V4LvNv3JAlIaUUpRoFUvtaBZHQJ3yshvBJqZ1fZQoaAZoCWgPQwhLj6Z6MihyQJSGlFKUaBVNFgFoFkdAnfLqraM72nV9lChoBmgJaA9DCIALsmV5GXBAlIaUUpRoFU0UAWgWR0Cd8vjFQ2uQdX2UKGgGaAloD0MIPiR872+Sb0CUhpRSlGgVS9doFkdAnfNpwjt5U3V9lChoBmgJaA9DCKPogY+BfnJAlIaUUpRoFU17AWgWR0Cd854MnZ00dX2UKGgGaAloD0MIvr9BezWZcUCUhpRSlGgVS+poFkdAnfRfoaDPGHV9lChoBmgJaA9DCOvIkc5AtW9AlIaUUpRoFU1uAWgWR0Cd9HooNNJwdX2UKGgGaAloD0MIvRqgNNStckCUhpRSlGgVTRgBaBZHQJ31DM2WIGh1fZQoaAZoCWgPQwjBAMKH0sVwQJSGlFKUaBVL8WgWR0Cd9TrOJLuhdX2UKGgGaAloD0MI0xQBTu+XckCUhpRSlGgVS+FoFkdAnfbU0Nz8xnV9lChoBmgJaA9DCPchb7n6WXFAlIaUUpRoFUvQaBZHQJ33AFt8/lh1fZQoaAZoCWgPQwj85ChAFKlwQJSGlFKUaBVL6GgWR0Cd91jBl+VkdX2UKGgGaAloD0MI1h2LbRI1cECUhpRSlGgVTQcBaBZHQJ33z/xUedV1fZQoaAZoCWgPQwizz2OUp6NwQJSGlFKUaBVNLwFoFkdAnffw5NoJzHV9lChoBmgJaA9DCA6/m24ZknFAlIaUUpRoFUvlaBZHQJ34bINmUW51fZQoaAZoCWgPQwi5UPnX8qdxQJSGlFKUaBVL62gWR0Cd+LIdlum8dX2UKGgGaAloD0MIkBK7trdEUECUhpRSlGgVS6toFkdAnfjJ6Y3Ns3V9lChoBmgJaA9DCE7QJoePDHBAlIaUUpRoFUvYaBZHQJ3440fozN51fZQoaAZoCWgPQwhbe5+qwtVvQJSGlFKUaBVL7GgWR0Cd+Ok5p8F7dX2UKGgGaAloD0MIIHnnUEaycUCUhpRSlGgVS/JoFkdAnfkR1klNUXV9lChoBmgJaA9DCBYUBmVaBnFAlIaUUpRoFUv3aBZHQJ35sytV7yB1fZQoaAZoCWgPQwiyf54GzJNyQJSGlFKUaBVL+GgWR0Cd+lZH/cWTdX2UKGgGaAloD0MITDPd66SYbUCUhpRSlGgVS91oFkdAnfqMOCoS+XV9lChoBmgJaA9DCOvhy0SRfHJAlIaUUpRoFUvSaBZHQJ37xdszl911fZQoaAZoCWgPQwhU5uYbUTNzQJSGlFKUaBVNJgFoFkdAnfwcFpwjuHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f84526fe7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f84526fe830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f84526fe8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f84526fe950>", "_build": "<function ActorCriticPolicy._build at 0x7f84526fe9e0>", "forward": "<function ActorCriticPolicy.forward at 0x7f84526fea70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f84526feb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f84526feb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f84526fec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f84526fecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f84526fed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f84526fedd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f84526fac40>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 7840000, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686892254355247090, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVVwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwyIAHwAZAETABQAUwCUTksChpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMS05N2IzN2ZmMTc0OTU+lIwNbGVhcm5pbmdfcmF0ZZRLE0MCDAGUjAdscl9pbml0lIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHH2UfZQoaBVoDYwMX19xdWFsbmFtZV9flIwtc3F1YXJlX2RlY2F5X3NjaGVkdWxlci48bG9jYWxzPi5sZWFybmluZ19yYXRllIwPX19hbm5vdGF0aW9uc19flH2UaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5RzjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGZNBb5A5Ig/tbPivkVKMr/ne3i+lWKzvgAAAAAAAAAAjVyIvsRF2j5JTRA+CVkjv0mc7L5mn14+AAAAAAAAAABNqi69KUAuugBysTukJUA4q1FNO7r4vrcAAAAAAACAPxrrlD3l2og/o1JaPu2vMr9UWZI9U5ylPQAAAAAAAAAAkwEWPp/11bsaJT87V6/wuC6OIb1QJ2q6AAAAAAAAAADNN7s8HFcZvPbBBb6JSRM74vh6vZ0AKDwAAIA/AACAP2a1V70496I/+4L1vrZuO7+cWLC80JtkvgAAAAAAAAAA82Pcvcp9gj9OcoC+2SI0v6MGjb5+Ll+9AAAAAAAAAAAz2OM8BPeoPs44Uz004uW+Lpb3PSP3RLsAAAAAAAAAAM0vEj32/Ei6OFQ6M/yofCuOxU27fFm9swAAgD8AAIA/miIvPrXvWj5+XAS/vOvPvgTSNb02vN+9AAAAAAAAAADmSVQ9lzSmPvhXoz2rSu6+Bb7+PaOD0jwAAAAAAAAAAGa9pD2PXlq6SHfFudL/zzUT5k+68Eo1tQAAAAAAAAAADauTvSzSNT+mvSI+phEYv1M11L1lSDY+AAAAAAAAAADmIAw+5oCIP1u9uD4SaDe/GUBtPk6sHT4AAAAAAAAAAM2RbD6QVno/b7QDP7peLr8dcL0+Mx5cPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.21684479999999995, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV6AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG+PmCiAUcqMAWyUS8OMAXSUR0C6uTjqKP4mdX2UKGgGR0BxKDVRUFSsaAdLsmgIR0C6uT/8l5WzdX2UKGgGR0BzsbZJ04ipaAdLy2gIR0C6uUMchkiEdX2UKGgGR0Bx8ZZFG5MDaAdL52gIR0C6uUdYGMXKdX2UKGgGR0BzuxSCOFQEaAdLzGgIR0C6uVxUJfICdX2UKGgGR0BzgAoKD017aAdNHQFoCEdAurl7Llmvn3V9lChoBkdAcJDQkHD77GgHS8loCEdAurmMyXUpeHV9lChoBkdAcFI9h7Vrh2gHS8hoCEdAurnVlWfbsXV9lChoBkdAb+ldFfAsTWgHS81oCEdAurnlEAo5P3V9lChoBkdAcPJ5gPVd5mgHS8poCEdAurnstcv/R3V9lChoBkdAcvg9s7+1jWgHS91oCEdAuroTXoTwlXV9lChoBkdAcvgcsDnvD2gHS85oCEdAurox7v5P/XV9lChoBkdAc6Gmp2ll9WgHS8toCEdAurpHwx33YnV9lChoBkdAchuE4//vOWgHS6NoCEdAurpZHH3lCHV9lChoBkdAcRtnwob4rWgHS6poCEdAurpcZNwiq3V9lChoBkdAdD2Hww0wamgHS/RoCEdAurqi+M6zV3V9lChoBkdAc/S/GVAzHmgHS9loCEdAurq0wIt16nV9lChoBkdAct1WZJCjUWgHS+toCEdAurrCL/CIlHV9lChoBkdAb9IDGLk0amgHS8FoCEdAurrJUgjhUHV9lChoBkdAQ4gOvt+kQGgHS3VoCEdAurrgk8ifQXV9lChoBkdAcs9GtITXa2gHS+loCEdAurrqvA44qHV9lChoBkdAbz2Z4wAU+WgHS7poCEdAursaj1wo9nV9lChoBkdAck2EX+ERJ2gHS+hoCEdAurseLOzIFXV9lChoBkdAb+QMmWt2cWgHS7doCEdAurslPYWcjXV9lChoBkdAcpWZ0Syt3mgHTTUBaAhHQLq7SP8AJcB1fZQoaAZHQHCNIUnG829oB0vUaAhHQLq7XNsnAqN1fZQoaAZHQHFjJoGpuMxoB0vEaAhHQLq7gfNA1Nx1fZQoaAZHQHFLk6cRUWFoB0vJaAhHQLq7nxc3VCp1fZQoaAZHQHDyX6l+EytoB0u+aAhHQLq7onWrfch1fZQoaAZHQFQTazeGfwtoB0uOaAhHQLq7sGTLW7R1fZQoaAZHQGb+/4ZdfLNoB03oA2gIR0C6u94f8uSPdX2UKGgGR0BzmzJA+pwTaAdL7WgIR0C6u+2Lgn+idX2UKGgGR0BxcTQKKHfuaAdLvmgIR0C6u/LIxQBQdX2UKGgGR0BwnM3zcynDaAdLxmgIR0C6vA+O801qdX2UKGgGR0BxWyuB+WnkaAdL4GgIR0C6vBYvvjOtdX2UKGgGR0ByWDDjzZpSaAdLxWgIR0C6vCEhePaMdX2UKGgGR0ByOoh5gPVeaAdL0mgIR0C6vEAFC9h7dX2UKGgGR0BxyBs/IKc/aAdLtmgIR0C6vEbJW/8EdX2UKGgGR0BzXYaIeo1laAdLuGgIR0C6vEWVAzHkdX2UKGgGR0BwaDvTgEU1aAdLzGgIR0C6vF/pdKNAdX2UKGgGR0ByCpqQA+6iaAdL0GgIR0C6vIxi9ZiedX2UKGgGR0Bxkmu5jH4oaAdLu2gIR0C6vKAumJm/dX2UKGgGR0BzSd8CxNZeaAdL2WgIR0C6vK2vr4WUdX2UKGgGR0Bx7ncJtzjnaAdLx2gIR0C6vNC6H0sfdX2UKGgGR0BBOGhmGucMaAdLoGgIR0C6vN/YSQHSdX2UKGgGR0BwFYPTXrdFaAdL0WgIR0C6vSK06YE4dX2UKGgGR0BzAAqnWJ7+aAdLsmgIR0C6vSVA3T/idX2UKGgGR0BxchCngpBpaAdL8mgIR0C6vSpQ+EAYdX2UKGgGR0BBBFWwNb1RaAdLhWgIR0C6vTVZs9B9dX2UKGgGR0BwRCh11W8zaAdL0GgIR0C6vTjd56dEdX2UKGgGR0BxV7D/EOy3aAdLxWgIR0C6vXc3EQ5FdX2UKGgGR0BxQEood+5OaAdLzWgIR0C6vY145cTrdX2UKGgGR0ByMpfNRm9QaAdLtGgIR0C6vby35N48dX2UKGgGR0Bx1f8/D+BIaAdLuWgIR0C6vfJGSZBtdX2UKGgGR0By0dB6a9bpaAdNHgFoCEdAur30q/dqL3V9lChoBkdAci4cUuctoWgHTQMBaAhHQLq9/DRc/t91fZQoaAZHQHEhClN1yNpoB0vNaAhHQLq+CMLncL11fZQoaAZHQHLsJp8F6iVoB0vBaAhHQLq+KnGsFMZ1fZQoaAZHQHGphMajveBoB0u4aAhHQLq+KUnG8291fZQoaAZHQHCdoM4LkS5oB0uwaAhHQLq+WVea8Yh1fZQoaAZHQHDeVK02LpBoB0vMaAhHQLrEjDaGpMp1fZQoaAZHQHBtp8fFJg9oB0vEaAhHQLrEi3Y+Sr51fZQoaAZHQHFFkSdvsJJoB0v4aAhHQLrE2Oymhuh1fZQoaAZHQHF2IqLCN0hoB0vEaAhHQLrE7Gd7OVx1fZQoaAZHQHJlZLIxQBRoB0vjaAhHQLrFDwx33Yd1fZQoaAZHQHLYtgBtDUpoB00QAWgIR0C6xRKN+9amdX2UKGgGR0BwVXeBQN1AaAdLyWgIR0C6xR7jkuHvdX2UKGgGR0ByPcVh1DBuaAdNHAJoCEdAusUonDziCXV9lChoBkdAcTUv24/eL2gHS8RoCEdAusVEfKZDzHV9lChoBkdAc766f8MuvmgHTdwBaAhHQLrFRivxH5J1fZQoaAZHQG+J7HyVfNRoB0u8aAhHQLrFS05lvqF1fZQoaAZHQHHNa3AmAsloB0utaAhHQLrFTaSs8xN1fZQoaAZHQHEtpC4SYgJoB0vWaAhHQLrFZrTYukF1fZQoaAZHQHHsqNlyzX1oB0vOaAhHQLrFgKhtcfN1fZQoaAZHQHFGnyd4FA5oB0vZaAhHQLrFxzpHI6t1fZQoaAZHQHCXUAggX/JoB0u9aAhHQLrFztTUAkt1fZQoaAZHQHCesAmzByloB0vCaAhHQLrF1QSSNfh1fZQoaAZHQDw607bL2YhoB0tgaAhHQLrF3X9itq51fZQoaAZHQFKvY4ACGN9oB0uSaAhHQLrF3I42jwh1fZQoaAZHQG/MD1XeWOZoB0vKaAhHQLrGIxvNu+B1fZQoaAZHQHF3OYD1XeZoB0u3aAhHQLrGOYK6WgR1fZQoaAZHQHLEmZ3LV4JoB0vRaAhHQLrGcLU1AJN1fZQoaAZHQHG+mNNrTH9oB0vTaAhHQLrGffVqesh1fZQoaAZHQHM4l6/qPfdoB0vFaAhHQLrGhWAPNFB1fZQoaAZHQHHcyVKPGQ1oB0vMaAhHQLrGl6Tnq3V1fZQoaAZHQHG6E0rK/21oB0uvaAhHQLrGopTuOS51fZQoaAZHQHEAo+KTB69oB0vOaAhHQLrGtaoddVx1fZQoaAZHQHGy20/nnuBoB0vpaAhHQLrGxhePaL51fZQoaAZHQHBEd+kP+XJoB0vEaAhHQLrHDUvf0mN1fZQoaAZHQHI+MoH9m6JoB0vKaAhHQLrHIFtsN2F1fZQoaAZHQHNVkknkT6BoB0vFaAhHQLrHH52Qnx91fZQoaAZHQHIgiKziS7poB0vOaAhHQLrHN5f+jud1fZQoaAZHQEeyMd92HL1oB0tsaAhHQLrHWukDZDl1fZQoaAZHQHGfzRplBhRoB0u2aAhHQLrHdjynUDx1fZQoaAZHQHCXpDzAeq9oB0uxaAhHQLrHqQemvW91fZQoaAZHQFLDcJdB0IVoB0uKaAhHQLrHrH3Dej51fZQoaAZHQHLw1DfFaStoB0vkaAhHQLrHs5NXYDl1fZQoaAZHQDp/bVSXMQpoB0usaAhHQLrHto1k1/F1fZQoaAZHQD//iqABkqdoB0tjaAhHQLrHwOLBKth1fZQoaAZHQHK/RGx2SuBoB0vCaAhHQLrH1z4UN8V1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1912, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVVwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwyIAHwAZAETABQAUwCUTksChpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMS05N2IzN2ZmMTc0OTU+lIwNbGVhcm5pbmdfcmF0ZZRLE0MCDAGUjAdscl9pbml0lIWUKXSUUpR9lCiMC19fcGFja2FnZV9flE6MCF9fbmFtZV9flIwIX19tYWluX1+UdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHH2UfZQoaBVoDYwMX19xdWFsbmFtZV9flIwtc3F1YXJlX2RlY2F5X3NjaGVkdWxlci48bG9jYWxzPi5sZWFybmluZ19yYXRllIwPX19hbm5vdGF0aW9uc19flH2UaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5RzjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFowHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:417e08825083a6132cdd1fb584241c09807bd5b29fe9244e8df17fbc94a821fe
3
- size 185751
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6b893677956cd5bc100bfb25bfe9ff34ca07ade56ac74d1fa6d41ce523cb390
3
+ size 157847
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 286.2597701437368, "std_reward": 16.681832237686713, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T18:57:47.598883"}
 
1
+ {"mean_reward": 288.9118304, "std_reward": 10.97332868779998, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-16T07:05:52.212687"}