--- library_name: peft license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: a757d869-c338-48d5-b85f-b95a8d17ea3f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Llama-3.2-1B bf16: auto chat_template: llama3 data_processes: 16 dataset_prepared_path: null datasets: - data_files: - 491e3818387ef2aa_train_data.json ds_type: json format: custom path: /workspace/input_data/491e3818387ef2aa_train_data.json type: field_instruction: original_prompt_text field_output: jailbreak_prompt_text format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 1 eval_batch_size: 8 eval_max_new_tokens: 128 eval_steps: 25 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: 0x1202/a757d869-c338-48d5-b85f-b95a8d17ea3f hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0003 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 70GB max_steps: 200 micro_batch_size: 8 mlflow_experiment_name: /tmp/491e3818387ef2aa_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 50 saves_per_epoch: null sequence_len: 1028 special_tokens: pad_token: <|end_of_text|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 50 wandb_entity: null wandb_mode: online wandb_name: a757d869-c338-48d5-b85f-b95a8d17ea3f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: a757d869-c338-48d5-b85f-b95a8d17ea3f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# a757d869-c338-48d5-b85f-b95a8d17ea3f This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7618 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2366 | 0.0030 | 1 | 2.2338 | | 1.1072 | 0.0758 | 25 | 1.6969 | | 0.4257 | 0.1516 | 50 | 2.1368 | | 0.6276 | 0.2274 | 75 | 1.2341 | | 0.5109 | 0.3033 | 100 | 1.3453 | | 0.5309 | 0.3791 | 125 | 0.8119 | | 0.1811 | 0.4549 | 150 | 0.7496 | | 0.7456 | 0.5307 | 175 | 0.7250 | | 0.0983 | 0.6065 | 200 | 0.7618 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1