File size: 7,950 Bytes
27fbe48 |
1 2 3 4 5 6 7 8 9 10 |
nohup: ignoring input
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
No config specified, defaulting to: apps/all
Reusing dataset apps (/home/user/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
PyTorch: setting up devices
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
Max length: 2048
GPU memory occupied: 1869 MB.
0%| | 0/85 [00:00<?, ?it/s]
1%| | 1/85 [00:01<02:44, 1.96s/it]
1%| | 1/85 [00:01<02:44, 1.96s/it]
2%|β | 2/85 [00:03<02:25, 1.75s/it]
4%|β | 3/85 [00:05<02:17, 1.68s/it]
5%|β | 4/85 [00:06<02:14, 1.66s/it]
6%|β | 5/85 [00:08<02:11, 1.64s/it]
6%|β | 5/85 [00:08<02:11, 1.64s/it]
7%|β | 6/85 [00:10<02:08, 1.63s/it]
8%|β | 7/85 [00:11<02:07, 1.63s/it]
9%|β | 8/85 [00:13<02:05, 1.63s/it]
11%|β | 9/85 [00:14<02:03, 1.63s/it]
12%|ββ | 10/85 [00:16<02:01, 1.62s/it]
12%|ββ | 10/85 [00:16<02:01, 1.62s/it]
13%|ββ | 11/85 [00:18<01:59, 1.62s/it]
14%|ββ | 12/85 [00:19<01:58, 1.62s/it]
15%|ββ | 13/85 [00:21<01:56, 1.62s/it]
16%|ββ | 14/85 [00:22<01:55, 1.62s/it]
18%|ββ | 15/85 [00:24<01:53, 1.62s/it]
18%|ββ | 15/85 [00:24<01:53, 1.62s/it]
19%|ββ | 16/85 [00:26<01:52, 1.63s/it]
20%|ββ | 17/85 [00:27<01:50, 1.63s/it]
21%|ββ | 18/85 [00:29<01:57, 1.75s/it]
22%|βββ | 19/85 [00:31<01:53, 1.71s/it]
24%|βββ | 20/85 [00:33<01:49, 1.69s/it]
24%|βββ | 20/85 [00:33<01:49, 1.69s/it]
25%|βββ | 21/85 [00:34<01:46, 1.67s/it]
26%|βββ | 22/85 [00:36<01:44, 1.66s/it]
27%|βββ | 23/85 [00:38<01:42, 1.65s/it]
28%|βββ | 24/85 [00:39<01:40, 1.64s/it]
29%|βββ | 25/85 [00:41<01:38, 1.64s/it]
29%|βββ | 25/85 [00:41<01:38, 1.64s/it]
31%|βββ | 26/85 [00:42<01:36, 1.64s/it]
32%|ββββ | 27/85 [00:44<01:35, 1.64s/it]
33%|ββββ | 28/85 [00:46<01:33, 1.64s/it]
34%|ββββ | 29/85 [00:47<01:31, 1.64s/it]
35%|ββββ | 30/85 [00:49<01:29, 1.64s/it]
35%|ββββ | 30/85 [00:49<01:29, 1.64s/it]
36%|ββββ | 31/85 [00:51<01:28, 1.64s/it]
38%|ββββ | 32/85 [00:52<01:26, 1.64s/it]
39%|ββββ | 33/85 [00:54<01:25, 1.64s/it]
40%|ββββ | 34/85 [00:56<01:23, 1.64s/it]
41%|ββββ | 35/85 [00:58<01:28, 1.76s/it]
41%|ββββ | 35/85 [00:58<01:28, 1.76s/it]
42%|βββββ | 36/85 [00:59<01:24, 1.73s/it]
44%|βββββ | 37/85 [01:01<01:21, 1.70s/it]
45%|βββββ | 38/85 [01:03<01:19, 1.68s/it]
46%|βββββ | 39/85 [01:04<01:16, 1.67s/it]
47%|βββββ | 40/85 [01:06<01:14, 1.66s/it]
47%|βββββ | 40/85 [01:06<01:14, 1.66s/it]
48%|βββββ | 41/85 [01:07<01:12, 1.66s/it]
49%|βββββ | 42/85 [01:09<01:11, 1.65s/it]
51%|βββββ | 43/85 [01:11<01:09, 1.65s/it]
52%|ββββββ | 44/85 [01:12<01:07, 1.65s/it]
53%|ββββββ | 45/85 [01:14<01:05, 1.65s/it]
53%|ββββββ | 45/85 [01:14<01:05, 1.65s/it]
54%|ββββββ | 46/85 [01:16<01:04, 1.64s/it]
55%|ββββββ | 47/85 [01:17<01:02, 1.65s/it]
56%|ββββββ | 48/85 [01:19<01:00, 1.65s/it]
58%|ββββββ | 49/85 [01:21<00:59, 1.65s/it]
59%|ββββββ | 50/85 [01:22<00:57, 1.64s/it]
59%|ββββββ | 50/85 [01:22<00:57, 1.64s/it]
60%|ββββββ | 51/85 [01:24<00:55, 1.64s/it]
61%|ββββββ | 52/85 [01:26<00:58, 1.77s/it]
62%|βββββββ | 53/85 [01:28<00:55, 1.73s/it]
64%|βββββββ | 54/85 [01:29<00:52, 1.70s/it]
65%|βββββββ | 55/85 [01:31<00:50, 1.69s/it]
65%|βββββββ | 55/85 [01:31<00:50, 1.69s/it]
66%|βββββββ | 56/85 [01:32<00:48, 1.67s/it]
67%|βββββββ | 57/85 [01:34<00:46, 1.67s/it]
68%|βββββββ | 58/85 [01:36<00:44, 1.66s/it]
69%|βββββββ | 59/85 [01:37<00:43, 1.66s/it]
71%|βββββββ | 60/85 [01:39<00:41, 1.65s/it]
71%|βββββββ | 60/85 [01:39<00:41, 1.65s/it]
72%|ββββββββ | 61/85 [01:41<00:39, 1.65s/it]
73%|ββββββββ | 62/85 [01:42<00:37, 1.65s/it]
74%|ββββββββ | 63/85 [01:44<00:36, 1.65s/it]
75%|ββββββββ | 64/85 [01:46<00:34, 1.65s/it]
76%|ββββββββ | 65/85 [01:47<00:33, 1.65s/it]
76%|ββββββββ | 65/85 [01:47<00:33, 1.65s/it]
78%|ββββββββ | 66/85 [01:49<00:31, 1.65s/it]
79%|ββββββββ | 67/85 [01:51<00:29, 1.65s/it]
80%|ββββββββ | 68/85 [01:52<00:28, 1.65s/it]
81%|ββββββββ | 69/85 [01:54<00:28, 1.77s/it]
82%|βββββββββ | 70/85 [01:56<00:25, 1.73s/it]
82%|βββββββββ | 70/85 [01:56<00:25, 1.73s/it]
84%|βββββββββ | 71/85 [01:58<00:23, 1.71s/it]
85%|βββββββββ | 72/85 [01:59<00:21, 1.69s/it]
86%|βββββββββ | 73/85 [02:01<00:20, 1.68s/it]
87%|βββββββββ | 74/85 [02:03<00:18, 1.67s/it]
88%|βββββββββ | 75/85 [02:04<00:16, 1.66s/it]
88%|βββββββββ | 75/85 [02:04<00:16, 1.66s/it]
89%|βββββββββ | 76/85 [02:06<00:14, 1.66s/it]
91%|βββββββββ | 77/85 [02:08<00:13, 1.66s/it]
92%|ββββββββββ| 78/85 [02:09<00:11, 1.65s/it]
93%|ββββββββββ| 79/85 [02:11<00:09, 1.65s/it]
94%|ββββββββββ| 80/85 [02:12<00:08, 1.65s/it]
94%|ββββββββββ| 80/85 [02:12<00:08, 1.65s/it]
95%|ββββββββββ| 81/85 [02:14<00:06, 1.65s/it]
96%|ββββββββββ| 82/85 [02:16<00:04, 1.65s/it]
98%|ββββββββββ| 83/85 [02:17<00:03, 1.65s/it]
99%|ββββββββββ| 84/85 [02:19<00:01, 1.65s/it]
100%|ββββββββββ| 85/85 [02:21<00:00, 1.65s/it]
100%|ββββββββββ| 85/85 [02:21<00:00, 1.65s/it]
100%|ββββββββββ| 85/85 [02:21<00:00, 1.65s/it]
100%|ββββββββββ| 85/85 [02:21<00:00, 1.66s/it] |