File size: 82,992 Bytes
2f85276
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
nohup: ignoring input
[2023-02-20 17:05:49,355] [WARNING] [runner.py:186:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
[2023-02-20 17:05:49,405] [INFO] [runner.py:548:main] cmd = /opt/conda/bin/python3 -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMSwgMiwgMywgNCwgNSwgNl19 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None tune_gpt.py --deepspeed deepspeed.json --upload-experiment
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
[2023-02-20 17:05:51,897] [INFO] [launch.py:135:main] 0 NCCL_VERSION=2.11.4
[2023-02-20 17:05:51,897] [INFO] [launch.py:142:main] WORLD INFO DICT: {'localhost': [0, 1, 2, 3, 4, 5, 6]}
[2023-02-20 17:05:51,897] [INFO] [launch.py:148:main] nnodes=1, num_local_procs=7, node_rank=0
[2023-02-20 17:05:51,897] [INFO] [launch.py:161:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1, 2, 3, 4, 5, 6]})
[2023-02-20 17:05:51,897] [INFO] [launch.py:162:main] dist_world_size=7
[2023-02-20 17:05:51,897] [INFO] [launch.py:164:main] Setting CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index
No config specified, defaulting to: apps/all
No config specified, defaulting to: apps/all
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
No config specified, defaulting to: apps/all
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
No config specified, defaulting to: apps/all
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
No config specified, defaulting to: apps/all
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
No config specified, defaulting to: apps/all
No config specified, defaulting to: apps/all
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
Found cached dataset apps (/home/.cache/huggingface/datasets/codeparrot___apps/all/0.0.0/04ac807715d07d6e5cc580f59cdc8213cd7dc4529d0bb819cca72c9f8e8c1aa5)
Max length: 2048
PyTorch: setting up devices
Max length: 2048
PyTorch: setting up devices
Max length: 2048
PyTorch: setting up devices
Max length: 2048
PyTorch: setting up devices
[2023-02-20 17:06:11,414] [INFO] [comm.py:657:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
Max length: 2048
PyTorch: setting up devices
Max length: 2048
PyTorch: setting up devices
Max length: 2048
PyTorch: setting up devices
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
GPU memory occupied: 6883 MB.
[2023-02-20 17:06:12,424] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed info: version=0.8.1, git-hash=unknown, git-branch=unknown
[2023-02-20 17:06:14,006] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed Flops Profiler Enabled: False
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Installed CUDA version 11.6 does not match the version torch was compiled with 11.7 but since the APIs are compatible, accepting this combination
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Detected CUDA files, patching ldflags
Emitting ninja build file /home/.cache/torch_extensions/py38_cu117/cpu_adam/build.ninja...
Building extension module cpu_adam...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
ninja: no work to do.
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.825831890106201 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.6894984245300293 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.815955877304077 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.816244125366211 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.7123100757598877 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.8215184211730957 seconds
Loading extension module cpu_adam...
Time to load cpu_adam op: 2.789081573486328 seconds
Adam Optimizer #0 is created with AVX2 arithmetic capability.
Config: alpha=0.000050, betas=(0.900000, 0.999000), weight_decay=0.050000, adam_w=1
[2023-02-20 17:06:19,789] [INFO] [logging.py:75:log_dist] [Rank 0] Using DeepSpeed Optimizer param name adamw as basic optimizer
[2023-02-20 17:06:19,794] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed Basic Optimizer = DeepSpeedCPUAdam
[2023-02-20 17:06:19,795] [INFO] [utils.py:53:is_zero_supported_optimizer] Checking ZeRO support for optimizer=DeepSpeedCPUAdam type=<class 'deepspeed.ops.adam.cpu_adam.DeepSpeedCPUAdam'>
[2023-02-20 17:06:19,795] [INFO] [logging.py:75:log_dist] [Rank 0] Creating torch.float32 ZeRO stage 2 optimizer
[2023-02-20 17:06:19,795] [INFO] [stage_1_and_2.py:144:__init__] Reduce bucket size 500000000
[2023-02-20 17:06:19,795] [INFO] [stage_1_and_2.py:145:__init__] Allgather bucket size 500000000
[2023-02-20 17:06:19,795] [INFO] [stage_1_and_2.py:146:__init__] CPU Offload: True
[2023-02-20 17:06:19,795] [INFO] [stage_1_and_2.py:147:__init__] Round robin gradient partitioning: False
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Emitting ninja build file /home/.cache/torch_extensions/py38_cu117/utils/build.ninja...
Building extension module utils...
Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N)
ninja: no work to do.
Loading extension module utils...
Time to load utils op: 0.34289026260375977 seconds
Loading extension module utils...
Time to load utils op: 0.2027883529663086 seconds
Loading extension module utils...
Loading extension module utils...
Time to load utils op: 0.2021796703338623 seconds
Loading extension module utils...
Time to load utils op: 0.2025763988494873 seconds
Loading extension module utils...
Time to load utils op: 0.2033846378326416 seconds
Time to load utils op: 0.2029557228088379 seconds
Loading extension module utils...
Time to load utils op: 0.30292582511901855 seconds
Rank: 6 partition count [7] and sizes[(17885514, False)] 
Rank: 5 partition count [7] and sizes[(17885514, False)] 
Rank: 4 partition count [7] and sizes[(17885514, False)] 
Rank: 2 partition count [7] and sizes[(17885514, False)] 
Rank: 3 partition count [7] and sizes[(17885514, False)] 
Rank: 1 partition count [7] and sizes[(17885514, False)] 
Rank: 0 partition count [7] and sizes[(17885514, False)] 
[2023-02-20 17:06:27,470] [INFO] [utils.py:825:see_memory_usage] Before initializing optimizer states
[2023-02-20 17:06:27,471] [INFO] [utils.py:826:see_memory_usage] MA 0.66 GB         Max_MA 0.66 GB         CA 0.85 GB         Max_CA 1 GB 
[2023-02-20 17:06:27,471] [INFO] [utils.py:834:see_memory_usage] CPU Virtual Memory:  used = 39.85 GB, percent = 7.9%
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.00165557861328125 seconds
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.008014678955078125 seconds
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.03653693199157715 seconds
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.008858203887939453 seconds
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.0007452964782714844 seconds
Time to load utils op: 0.046510934829711914 seconds
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
[2023-02-20 17:06:28,120] [INFO] [utils.py:825:see_memory_usage] After initializing optimizer states
[2023-02-20 17:06:28,121] [INFO] [utils.py:826:see_memory_usage] MA 0.66 GB         Max_MA 0.66 GB         CA 0.85 GB         Max_CA 1 GB 
[2023-02-20 17:06:28,121] [INFO] [utils.py:834:see_memory_usage] CPU Virtual Memory:  used = 40.4 GB, percent = 8.0%
[2023-02-20 17:06:28,121] [INFO] [stage_1_and_2.py:527:__init__] optimizer state initialized
[2023-02-20 17:06:28,222] [INFO] [utils.py:825:see_memory_usage] After initializing ZeRO optimizer
[2023-02-20 17:06:28,222] [INFO] [utils.py:826:see_memory_usage] MA 0.66 GB         Max_MA 0.66 GB         CA 0.85 GB         Max_CA 1 GB 
[2023-02-20 17:06:28,223] [INFO] [utils.py:834:see_memory_usage] CPU Virtual Memory:  used = 40.4 GB, percent = 8.0%
[2023-02-20 17:06:28,223] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed Final Optimizer = adamw
[2023-02-20 17:06:28,223] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed using configured LR scheduler = WarmupLR
[2023-02-20 17:06:28,223] [INFO] [logging.py:75:log_dist] [Rank 0] DeepSpeed LR Scheduler = <deepspeed.runtime.lr_schedules.WarmupLR object at 0x7efce1a33f40>
[2023-02-20 17:06:28,224] [INFO] [logging.py:75:log_dist] [Rank 0] step=0, skipped=0, lr=[5e-05], mom=[[0.9, 0.999]]
[2023-02-20 17:06:28,226] [INFO] [config.py:1009:print] DeepSpeedEngine configuration:
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   activation_checkpointing_config  {
    "partition_activations": false, 
    "contiguous_memory_optimization": false, 
    "cpu_checkpointing": false, 
    "number_checkpoints": null, 
    "synchronize_checkpoint_boundary": false, 
    "profile": false
}
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   aio_config ................... {'block_size': 1048576, 'queue_depth': 8, 'thread_count': 1, 'single_submit': False, 'overlap_events': True}
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   amp_enabled .................. False
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   amp_params ................... False
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   autotuning_config ............ {
    "enabled": false, 
    "start_step": null, 
    "end_step": null, 
    "metric_path": null, 
    "arg_mappings": null, 
    "metric": "throughput", 
    "model_info": null, 
    "results_dir": "autotuning_results", 
    "exps_dir": "autotuning_exps", 
    "overwrite": true, 
    "fast": true, 
    "start_profile_step": 3, 
    "end_profile_step": 5, 
    "tuner_type": "gridsearch", 
    "tuner_early_stopping": 5, 
    "tuner_num_trials": 50, 
    "model_info_path": null, 
    "mp_size": 1, 
    "max_train_batch_size": null, 
    "min_train_batch_size": 1, 
    "max_train_micro_batch_size_per_gpu": 1.024000e+03, 
    "min_train_micro_batch_size_per_gpu": 1, 
    "num_tuning_micro_batch_sizes": 3
}
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   bfloat16_enabled ............. False
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   checkpoint_parallel_write_pipeline  False
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   checkpoint_tag_validation_enabled  True
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   checkpoint_tag_validation_fail  False
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   comms_config ................. <deepspeed.comm.config.DeepSpeedCommsConfig object at 0x7efd0eb74250>
[2023-02-20 17:06:28,226] [INFO] [config.py:1013:print]   communication_data_type ...... None
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   compression_config ........... {'weight_quantization': {'shared_parameters': {'enabled': False, 'quantizer_kernel': False, 'schedule_offset': 0, 'quantize_groups': 1, 'quantize_verbose': False, 'quantization_type': 'symmetric', 'quantize_weight_in_forward': False, 'rounding': 'nearest', 'fp16_mixed_quantize': False, 'quantize_change_ratio': 0.001}, 'different_groups': {}}, 'activation_quantization': {'shared_parameters': {'enabled': False, 'quantization_type': 'symmetric', 'range_calibration': 'dynamic', 'schedule_offset': 1000}, 'different_groups': {}}, 'sparse_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'row_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'head_pruning': {'shared_parameters': {'enabled': False, 'method': 'topk', 'schedule_offset': 1000}, 'different_groups': {}}, 'channel_pruning': {'shared_parameters': {'enabled': False, 'method': 'l1', 'schedule_offset': 1000}, 'different_groups': {}}, 'layer_reduction': {'enabled': False}}
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   curriculum_enabled_legacy .... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   curriculum_params_legacy ..... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   data_efficiency_config ....... {'enabled': False, 'seed': 1234, 'data_sampling': {'enabled': False, 'num_epochs': 1000, 'num_workers': 0, 'curriculum_learning': {'enabled': False}}, 'data_routing': {'enabled': False, 'random_ltd': {'enabled': False, 'layer_token_lr_schedule': {'enabled': False}}}}
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   data_efficiency_enabled ...... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   dataloader_drop_last ......... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   disable_allgather ............ False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   dump_state ................... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   dynamic_loss_scale_args ...... None
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_enabled ........... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_gas_boundary_resolution  1
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_layer_name ........ bert.encoder.layer
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_layer_num ......... 0
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_max_iter .......... 100
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_stability ......... 1e-06
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_tol ............... 0.01
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   eigenvalue_verbose ........... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   elasticity_enabled ........... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   flops_profiler_config ........ {
    "enabled": false, 
    "profile_step": 1, 
    "module_depth": -1, 
    "top_modules": 1, 
    "detailed": true, 
    "output_file": null
}
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   fp16_auto_cast ............... None
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   fp16_enabled ................. False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   fp16_master_weights_and_gradients  False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   global_rank .................. 0
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   grad_accum_dtype ............. None
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   gradient_accumulation_steps .. 64
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   gradient_clipping ............ 1.0
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   gradient_predivide_factor .... 1.0
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   initial_dynamic_scale ........ 65536
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   load_universal_checkpoint .... False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   loss_scale ................... 0
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   memory_breakdown ............. False
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   monitor_config ............... tensorboard=TensorBoardConfig(enabled=True, output_path='logs/', job_name='train_neo') wandb=WandbConfig(enabled=False, group=None, team=None, project='deepspeed') csv_monitor=CSVConfig(enabled=False, output_path='', job_name='DeepSpeedJobName') enabled=True
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   nebula_config ................ {
    "enabled": false, 
    "persistent_storage_path": null, 
    "persistent_time_interval": 100, 
    "num_of_version_in_retention": 2, 
    "enable_nebula_load": true, 
    "load_path": null
}
[2023-02-20 17:06:28,227] [INFO] [config.py:1013:print]   optimizer_legacy_fusion ...... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   optimizer_name ............... adamw
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   optimizer_params ............. {'lr': 5e-05, 'betas': [0.9, 0.999], 'eps': 1e-08, 'weight_decay': 0.05}
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   pipeline ..................... {'stages': 'auto', 'partition': 'best', 'seed_layers': False, 'activation_checkpoint_interval': 0}
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   pld_enabled .................. False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   pld_params ................... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   prescale_gradients ........... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   scheduler_name ............... WarmupLR
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   scheduler_params ............. {'warmup_min_lr': 0, 'warmup_max_lr': 5e-05, 'warmup_num_steps': 500}
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   sparse_attention ............. None
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   sparse_gradients_enabled ..... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   steps_per_print .............. 2000
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   train_batch_size ............. 2688
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   train_micro_batch_size_per_gpu  6
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   use_node_local_storage ....... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   wall_clock_breakdown ......... False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   world_size ................... 7
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   zero_allow_untested_optimizer  True
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   zero_config .................. stage=2 contiguous_gradients=True reduce_scatter=True reduce_bucket_size=500000000 allgather_partitions=True allgather_bucket_size=500000000 overlap_comm=True load_from_fp32_weights=True elastic_checkpoint=False offload_param=None offload_optimizer=DeepSpeedZeroOffloadOptimizerConfig(device='cpu', nvme_path=None, buffer_count=4, pin_memory=True, pipeline=False, pipeline_read=False, pipeline_write=False, fast_init=False) sub_group_size=1,000,000,000 cpu_offload_param=None cpu_offload_use_pin_memory=None cpu_offload=None prefetch_bucket_size=50,000,000 param_persistence_threshold=100,000 model_persistence_threshold=sys.maxsize max_live_parameters=1,000,000,000 max_reuse_distance=1,000,000,000 gather_16bit_weights_on_model_save=False stage3_gather_fp16_weights_on_model_save=False ignore_unused_parameters=True legacy_stage1=False round_robin_gradients=False
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   zero_enabled ................. True
[2023-02-20 17:06:28,228] [INFO] [config.py:1013:print]   zero_optimization_stage ...... 2
[2023-02-20 17:06:28,228] [INFO] [config.py:998:print_user_config]   json = {
    "optimizer": {
        "type": "AdamW", 
        "params": {
            "lr": 5e-05, 
            "betas": [0.9, 0.999], 
            "eps": 1e-08, 
            "weight_decay": 0.05
        }
    }, 
    "scheduler": {
        "type": "WarmupLR", 
        "params": {
            "warmup_min_lr": 0, 
            "warmup_max_lr": 5e-05, 
            "warmup_num_steps": 500
        }
    }, 
    "zero_optimization": {
        "stage": 2, 
        "offload_optimizer": {
            "device": "cpu", 
            "pin_memory": true
        }, 
        "allgather_partitions": true, 
        "allgather_bucket_size": 5.000000e+08, 
        "overlap_comm": true, 
        "reduce_scatter": true, 
        "reduce_bucket_size": 5.000000e+08, 
        "contiguous_gradients": true
    }, 
    "tensorboard": {
        "enabled": true, 
        "output_path": "logs/", 
        "job_name": "train_neo"
    }, 
    "zero_allow_untested_optimizer": true, 
    "gradient_accumulation_steps": 64, 
    "gradient_clipping": 1.0, 
    "steps_per_print": 2.000000e+03, 
    "train_batch_size": 2.688000e+03, 
    "train_micro_batch_size_per_gpu": 6, 
    "wall_clock_breakdown": false
}
Using /home/.cache/torch_extensions/py38_cu117 as PyTorch extensions root...
No modifications detected for re-loaded extension module utils, skipping build step...
Loading extension module utils...
Time to load utils op: 0.00042748451232910156 seconds
***** Running training *****
  Num examples = 117232
  Num Epochs = 10
  Instantaneous batch size per device = 6
  Total train batch size (w. parallel, distributed & accumulation) = 2688
  Gradient Accumulation steps = 64
  Total optimization steps = 430
  Number of trainable parameters = 125198592

  0%|          | 0/430 [00:00<?, ?it/s]You're using a GPT2TokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.

  0%|          | 1/430 [01:21<9:41:43, 81.36s/it]
                                                 
{'loss': 6.8879, 'learning_rate': 0.0, 'epoch': 0.02}

  0%|          | 1/430 [01:21<9:41:43, 81.36s/it]
  0%|          | 2/430 [02:41<9:36:10, 80.77s/it]
  1%|          | 3/430 [04:02<9:33:33, 80.59s/it]
  1%|          | 4/430 [05:22<9:31:45, 80.53s/it]
  1%|          | 5/430 [06:42<9:30:07, 80.49s/it]
                                                 
{'loss': 4.4038, 'learning_rate': 1.294882868674145e-05, 'epoch': 0.11}

  1%|          | 5/430 [06:42<9:30:07, 80.49s/it]
  1%|▏         | 6/430 [08:03<9:28:34, 80.46s/it]
  2%|▏         | 7/430 [09:24<9:28:07, 80.58s/it]
  2%|▏         | 8/430 [10:44<9:26:23, 80.53s/it]
  2%|▏         | 9/430 [12:05<9:24:58, 80.52s/it]
  2%|▏         | 10/430 [13:25<9:23:23, 80.49s/it]
                                                  
{'loss': 1.7286, 'learning_rate': 1.852558565662928e-05, 'epoch': 0.23}

  2%|▏         | 10/430 [13:25<9:23:23, 80.49s/it]
  3%|β–Ž         | 11/430 [14:45<9:22:02, 80.48s/it]
  3%|β–Ž         | 12/430 [16:06<9:20:48, 80.50s/it]
  3%|β–Ž         | 13/430 [17:26<9:19:19, 80.48s/it]
  3%|β–Ž         | 14/430 [18:47<9:18:17, 80.52s/it]
  3%|β–Ž         | 15/430 [20:08<9:16:48, 80.50s/it]
                                                  
{'loss': 0.5715, 'learning_rate': 2.1787779359648994e-05, 'epoch': 0.34}

  3%|β–Ž         | 15/430 [20:08<9:16:48, 80.50s/it]
  4%|β–Ž         | 16/430 [21:28<9:15:34, 80.52s/it]
  4%|▍         | 17/430 [22:49<9:14:08, 80.51s/it]
  4%|▍         | 18/430 [24:09<9:12:33, 80.47s/it]
  4%|▍         | 19/430 [25:30<9:11:22, 80.49s/it]
  5%|▍         | 20/430 [26:50<9:09:51, 80.47s/it]
                                                  
{'loss': 0.5316, 'learning_rate': 2.41023426265171e-05, 'epoch': 0.46}

  5%|▍         | 20/430 [26:50<9:09:51, 80.47s/it]
  5%|▍         | 21/430 [28:10<9:08:25, 80.45s/it]
  5%|β–Œ         | 22/430 [29:31<9:08:02, 80.59s/it]
  5%|β–Œ         | 23/430 [30:52<9:06:16, 80.53s/it]
  6%|β–Œ         | 24/430 [32:12<9:04:45, 80.51s/it]
  6%|β–Œ         | 25/430 [33:32<9:03:06, 80.46s/it]
                                                  
{'loss': 0.5132, 'learning_rate': 2.58976573734829e-05, 'epoch': 0.57}

  6%|β–Œ         | 25/430 [33:32<9:03:06, 80.46s/it]
  6%|β–Œ         | 26/430 [34:53<9:01:27, 80.42s/it]
  6%|β–‹         | 27/430 [36:13<8:59:58, 80.39s/it]
  7%|β–‹         | 28/430 [37:33<8:58:26, 80.36s/it]
  7%|β–‹         | 29/430 [38:54<8:57:43, 80.46s/it]
  7%|β–‹         | 30/430 [40:14<8:56:19, 80.45s/it]
                                                  
{'loss': 0.4914, 'learning_rate': 2.7364536329536817e-05, 'epoch': 0.69}

  7%|β–‹         | 30/430 [40:14<8:56:19, 80.45s/it]
  7%|β–‹         | 31/430 [41:35<8:55:05, 80.46s/it]
  7%|β–‹         | 32/430 [42:55<8:53:43, 80.46s/it]
  8%|β–Š         | 33/430 [44:16<8:52:17, 80.45s/it]
  8%|β–Š         | 34/430 [45:36<8:50:56, 80.45s/it]
  8%|β–Š         | 35/430 [46:57<8:49:37, 80.45s/it]
                                                  
{'loss': 0.4777, 'learning_rate': 2.8604764815275082e-05, 'epoch': 0.8}

  8%|β–Š         | 35/430 [46:57<8:49:37, 80.45s/it]
  8%|β–Š         | 36/430 [48:17<8:48:22, 80.46s/it]
  9%|β–Š         | 37/430 [49:38<8:46:59, 80.46s/it]
  9%|β–‰         | 38/430 [50:58<8:45:38, 80.46s/it]
  9%|β–‰         | 39/430 [52:19<8:44:24, 80.47s/it]
  9%|β–‰         | 40/430 [53:39<8:43:03, 80.47s/it]
                                                  
{'loss': 0.4716, 'learning_rate': 2.9679099596404923e-05, 'epoch': 0.92}

  9%|β–‰         | 40/430 [53:39<8:43:03, 80.47s/it]
 10%|β–‰         | 41/430 [55:00<8:42:48, 80.64s/it]
 10%|β–‰         | 42/430 [56:21<8:41:07, 80.59s/it]
 10%|β–ˆ         | 43/430 [57:41<8:39:31, 80.55s/it]
 10%|β–ˆ         | 44/430 [59:50<10:12:21, 95.19s/it]
 10%|β–ˆ         | 45/430 [1:01:11<9:42:25, 90.77s/it]
                                                    
{'loss': 0.515, 'learning_rate': 3.0626730032556536e-05, 'epoch': 1.05}

 10%|β–ˆ         | 45/430 [1:01:11<9:42:25, 90.77s/it]
 11%|β–ˆ         | 46/430 [1:02:31<9:21:05, 87.67s/it]
 11%|β–ˆ         | 47/430 [1:03:52<9:06:42, 85.65s/it]
 11%|β–ˆ         | 48/430 [1:05:13<8:55:45, 84.15s/it]
 11%|β–ˆβ–        | 49/430 [1:06:33<8:47:15, 83.03s/it]
 12%|β–ˆβ–        | 50/430 [1:07:54<8:41:00, 82.27s/it]
                                                    
{'loss': 0.4496, 'learning_rate': 3.147441434337073e-05, 'epoch': 1.16}

 12%|β–ˆβ–        | 50/430 [1:07:54<8:41:00, 82.27s/it]
 12%|β–ˆβ–        | 51/430 [1:09:14<8:36:14, 81.73s/it]
 12%|β–ˆβ–        | 52/430 [1:10:35<8:32:33, 81.36s/it]
 12%|β–ˆβ–        | 53/430 [1:11:55<8:30:00, 81.17s/it]
 13%|β–ˆβ–Ž        | 54/430 [1:13:16<8:27:22, 80.96s/it]
 13%|β–ˆβ–Ž        | 55/430 [1:14:37<8:25:21, 80.86s/it]
                                                    
{'loss': 0.4428, 'learning_rate': 3.224123807782732e-05, 'epoch': 1.28}

 13%|β–ˆβ–Ž        | 55/430 [1:14:37<8:25:21, 80.86s/it]
 13%|β–ˆβ–Ž        | 56/430 [1:15:57<8:23:29, 80.77s/it]
 13%|β–ˆβ–Ž        | 57/430 [1:17:18<8:21:34, 80.68s/it]
 13%|β–ˆβ–Ž        | 58/430 [1:18:38<8:19:56, 80.63s/it]
 14%|β–ˆβ–Ž        | 59/430 [1:19:59<8:18:24, 80.60s/it]
 14%|β–ˆβ–        | 60/430 [1:21:19<8:16:44, 80.55s/it]
                                                    
{'loss': 0.4354, 'learning_rate': 3.294129329942464e-05, 'epoch': 1.39}

 14%|β–ˆβ–        | 60/430 [1:21:19<8:16:44, 80.55s/it]
 14%|β–ˆβ–        | 61/430 [1:22:40<8:15:19, 80.54s/it]
 14%|β–ˆβ–        | 62/430 [1:24:00<8:13:53, 80.53s/it]
 15%|β–ˆβ–        | 63/430 [1:25:21<8:12:48, 80.57s/it]
 15%|β–ˆβ–        | 64/430 [1:26:41<8:11:20, 80.55s/it]
 15%|β–ˆβ–Œ        | 65/430 [1:28:02<8:09:50, 80.52s/it]
                                                    
{'loss': 0.4267, 'learning_rate': 3.358528167653452e-05, 'epoch': 1.5}

 15%|β–ˆβ–Œ        | 65/430 [1:28:02<8:09:50, 80.52s/it]
 15%|β–ˆβ–Œ        | 66/430 [1:29:22<8:08:31, 80.52s/it]
 16%|β–ˆβ–Œ        | 67/430 [1:30:43<8:07:03, 80.51s/it]
 16%|β–ˆβ–Œ        | 68/430 [1:32:03<8:05:39, 80.50s/it]
 16%|β–ˆβ–Œ        | 69/430 [1:33:24<8:04:17, 80.49s/it]
 16%|β–ˆβ–‹        | 70/430 [1:34:44<8:02:50, 80.47s/it]
                                                    
{'loss': 0.4245, 'learning_rate': 3.4181521785162905e-05, 'epoch': 1.62}

 16%|β–ˆβ–‹        | 70/430 [1:34:44<8:02:50, 80.47s/it]
 17%|β–ˆβ–‹        | 71/430 [1:36:05<8:02:07, 80.58s/it]
 17%|β–ˆβ–‹        | 72/430 [1:37:25<8:00:27, 80.52s/it]
 17%|β–ˆβ–‹        | 73/430 [1:38:46<7:58:58, 80.50s/it]
 17%|β–ˆβ–‹        | 74/430 [1:40:06<7:57:28, 80.47s/it]
 17%|β–ˆβ–‹        | 75/430 [1:41:27<7:56:03, 80.46s/it]
                                                    
{'loss': 0.4183, 'learning_rate': 3.473660804639045e-05, 'epoch': 1.73}

 17%|β–ˆβ–‹        | 75/430 [1:41:27<7:56:03, 80.46s/it]
 18%|β–ˆβ–Š        | 76/430 [1:42:47<7:54:59, 80.51s/it]
 18%|β–ˆβ–Š        | 77/430 [1:44:08<7:53:37, 80.50s/it]
 18%|β–ˆβ–Š        | 78/430 [1:45:28<7:52:21, 80.52s/it]
 18%|β–ˆβ–Š        | 79/430 [1:46:49<7:50:59, 80.51s/it]
 19%|β–ˆβ–Š        | 80/430 [1:48:09<7:49:36, 80.51s/it]
                                                    
{'loss': 0.4186, 'learning_rate': 3.525585656629274e-05, 'epoch': 1.85}

 19%|β–ˆβ–Š        | 80/430 [1:48:09<7:49:36, 80.51s/it]
 19%|β–ˆβ–‰        | 81/430 [1:49:30<7:48:23, 80.53s/it]
 19%|β–ˆβ–‰        | 82/430 [1:50:50<7:47:05, 80.53s/it]
 19%|β–ˆβ–‰        | 83/430 [1:52:11<7:45:34, 80.50s/it]
 20%|β–ˆβ–‰        | 84/430 [1:53:32<7:45:20, 80.69s/it]
 20%|β–ˆβ–‰        | 85/430 [1:54:52<7:43:34, 80.62s/it]
                                                    
{'loss': 0.4107, 'learning_rate': 3.574361557584177e-05, 'epoch': 1.96}

 20%|β–ˆβ–‰        | 85/430 [1:54:52<7:43:34, 80.62s/it]
 20%|β–ˆβ–ˆ        | 86/430 [1:56:13<7:42:01, 80.59s/it]
 20%|β–ˆβ–ˆ        | 87/430 [1:58:23<9:05:42, 95.46s/it]
 20%|β–ˆβ–ˆ        | 88/430 [1:59:44<8:38:35, 90.98s/it]
 21%|β–ˆβ–ˆ        | 89/430 [2:01:04<8:19:08, 87.82s/it]
 21%|β–ˆβ–ˆ        | 90/430 [2:02:25<8:05:18, 85.64s/it]
                                                    
{'loss': 0.4564, 'learning_rate': 3.6292389118326696e-05, 'epoch': 2.09}

 21%|β–ˆβ–ˆ        | 90/430 [2:02:25<8:05:18, 85.64s/it]
 21%|β–ˆβ–ˆ        | 91/430 [2:03:45<7:55:07, 84.09s/it]
 21%|β–ˆβ–ˆβ–       | 92/430 [2:05:06<7:47:38, 83.01s/it]
 22%|β–ˆβ–ˆβ–       | 93/430 [2:06:26<7:42:05, 82.27s/it]
 22%|β–ˆβ–ˆβ–       | 94/430 [2:07:47<7:37:48, 81.75s/it]
 22%|β–ˆβ–ˆβ–       | 95/430 [2:09:07<7:34:41, 81.44s/it]
                                                    
{'loss': 0.3989, 'learning_rate': 3.6722735522346654e-05, 'epoch': 2.21}

 22%|β–ˆβ–ˆβ–       | 95/430 [2:09:07<7:34:41, 81.44s/it]
 22%|β–ˆβ–ˆβ–       | 96/430 [2:10:28<7:31:43, 81.15s/it]
 23%|β–ˆβ–ˆβ–Ž       | 97/430 [2:11:48<7:29:16, 80.95s/it]
 23%|β–ˆβ–ˆβ–Ž       | 98/430 [2:13:09<7:27:04, 80.80s/it]
 23%|β–ˆβ–ˆβ–Ž       | 99/430 [2:14:29<7:25:22, 80.73s/it]
 23%|β–ˆβ–ˆβ–Ž       | 100/430 [2:15:50<7:23:40, 80.67s/it]
                                                     
{'loss': 0.3972, 'learning_rate': 3.713122729342321e-05, 'epoch': 2.32}

 23%|β–ˆβ–ˆβ–Ž       | 100/430 [2:15:50<7:23:40, 80.67s/it]
 23%|β–ˆβ–ˆβ–Ž       | 101/430 [2:17:10<7:22:04, 80.62s/it]
 24%|β–ˆβ–ˆβ–Ž       | 102/430 [2:18:31<7:20:28, 80.58s/it]
 24%|β–ˆβ–ˆβ–       | 103/430 [2:19:51<7:18:57, 80.54s/it]
 24%|β–ˆβ–ˆβ–       | 104/430 [2:21:12<7:17:41, 80.56s/it]
 24%|β–ˆβ–ˆβ–       | 105/430 [2:22:32<7:16:17, 80.55s/it]
                                                     
{'loss': 0.3949, 'learning_rate': 3.751997728783617e-05, 'epoch': 2.44}

 24%|β–ˆβ–ˆβ–       | 105/430 [2:22:32<7:16:17, 80.55s/it]
 25%|β–ˆβ–ˆβ–       | 106/430 [2:23:53<7:15:01, 80.56s/it]
 25%|β–ˆβ–ˆβ–       | 107/430 [2:25:14<7:13:51, 80.59s/it]
 25%|β–ˆβ–ˆβ–Œ       | 108/430 [2:26:34<7:12:27, 80.58s/it]
 25%|β–ˆβ–ˆβ–Œ       | 109/430 [2:27:55<7:11:11, 80.60s/it]
 26%|β–ˆβ–ˆβ–Œ       | 110/430 [2:29:15<7:09:47, 80.59s/it]
                                                     
{'loss': 0.3924, 'learning_rate': 3.789080603898437e-05, 'epoch': 2.55}

 26%|β–ˆβ–ˆβ–Œ       | 110/430 [2:29:15<7:09:47, 80.59s/it]
 26%|β–ˆβ–ˆβ–Œ       | 111/430 [2:30:36<7:08:21, 80.57s/it]
 26%|β–ˆβ–ˆβ–Œ       | 112/430 [2:31:57<7:07:20, 80.63s/it]
 26%|β–ˆβ–ˆβ–‹       | 113/430 [2:33:17<7:05:49, 80.60s/it]
 27%|β–ˆβ–ˆβ–‹       | 114/430 [2:34:38<7:04:22, 80.58s/it]
 27%|β–ˆβ–ˆβ–‹       | 115/430 [2:35:58<7:02:59, 80.57s/it]
                                                     
{'loss': 0.3919, 'learning_rate': 3.8245293313935915e-05, 'epoch': 2.66}

 27%|β–ˆβ–ˆβ–‹       | 115/430 [2:35:58<7:02:59, 80.57s/it]
 27%|β–ˆβ–ˆβ–‹       | 116/430 [2:37:20<7:02:34, 80.75s/it]
 27%|β–ˆβ–ˆβ–‹       | 117/430 [2:38:40<7:00:55, 80.69s/it]
 27%|β–ˆβ–ˆβ–‹       | 118/430 [2:40:01<6:59:23, 80.65s/it]
 28%|β–ˆβ–ˆβ–Š       | 119/430 [2:41:21<6:57:54, 80.63s/it]
 28%|β–ˆβ–ˆβ–Š       | 120/430 [2:42:42<6:56:26, 80.60s/it]
                                                     
{'loss': 0.3858, 'learning_rate': 3.8584818782171724e-05, 'epoch': 2.78}

 28%|β–ˆβ–ˆβ–Š       | 120/430 [2:42:42<6:56:26, 80.60s/it]
 28%|β–ˆβ–ˆβ–Š       | 121/430 [2:44:02<6:55:00, 80.58s/it]
 28%|β–ˆβ–ˆβ–Š       | 122/430 [2:45:23<6:53:30, 80.55s/it]
 29%|β–ˆβ–ˆβ–Š       | 123/430 [2:46:43<6:52:17, 80.58s/it]
 29%|β–ˆβ–ˆβ–‰       | 124/430 [2:48:04<6:51:04, 80.60s/it]
 29%|β–ˆβ–ˆβ–‰       | 125/430 [2:49:25<6:49:38, 80.59s/it]
                                                     
{'loss': 0.3816, 'learning_rate': 3.8910594444236536e-05, 'epoch': 2.89}

 29%|β–ˆβ–ˆβ–‰       | 125/430 [2:49:25<6:49:38, 80.59s/it]
 29%|β–ˆβ–ˆβ–‰       | 126/430 [2:50:45<6:48:24, 80.61s/it]
 30%|β–ˆβ–ˆβ–‰       | 127/430 [2:52:06<6:47:00, 80.60s/it]
 30%|β–ˆβ–ˆβ–‰       | 128/430 [2:53:27<6:46:32, 80.77s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 129/430 [2:54:48<6:44:56, 80.72s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 130/430 [2:56:57<7:56:43, 95.35s/it]
                                                     
{'loss': 0.4213, 'learning_rate': 3.922369074599331e-05, 'epoch': 3.02}

 30%|β–ˆβ–ˆβ–ˆ       | 130/430 [2:56:57<7:56:43, 95.35s/it]
 30%|β–ˆβ–ˆβ–ˆ       | 131/430 [2:58:18<7:32:58, 90.90s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 132/430 [2:59:38<7:15:53, 87.76s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 133/430 [3:00:59<7:03:46, 85.61s/it]
 31%|β–ˆβ–ˆβ–ˆ       | 134/430 [3:02:19<6:54:52, 84.10s/it]
 31%|β–ˆβ–ˆβ–ˆβ–      | 135/430 [3:03:40<6:48:13, 83.03s/it]
                                                     
{'loss': 0.3764, 'learning_rate': 3.9525057798763787e-05, 'epoch': 3.14}

 31%|β–ˆβ–ˆβ–ˆβ–      | 135/430 [3:03:40<6:48:13, 83.03s/it]
 32%|β–ˆβ–ˆβ–ˆβ–      | 136/430 [3:05:00<6:43:08, 82.27s/it]
 32%|β–ˆβ–ˆβ–ˆβ–      | 137/430 [3:06:21<6:39:15, 81.76s/it]
 32%|β–ˆβ–ˆβ–ˆβ–      | 138/430 [3:07:41<6:36:06, 81.39s/it]
 32%|β–ˆβ–ˆβ–ˆβ–      | 139/430 [3:09:02<6:33:50, 81.20s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 140/430 [3:10:23<6:31:28, 81.00s/it]
                                                     
{'loss': 0.3702, 'learning_rate': 3.981554276636201e-05, 'epoch': 3.25}

 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 140/430 [3:10:23<6:31:28, 81.00s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 141/430 [3:11:43<6:29:27, 80.86s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 142/430 [3:13:04<6:27:32, 80.74s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 143/430 [3:14:24<6:26:05, 80.72s/it]
 33%|β–ˆβ–ˆβ–ˆβ–Ž      | 144/430 [3:15:45<6:24:25, 80.65s/it]
 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 145/430 [3:17:05<6:22:43, 80.57s/it]
                                                     
{'loss': 0.3689, 'learning_rate': 4.0095904221004775e-05, 'epoch': 3.37}

 34%|β–ˆβ–ˆβ–ˆβ–Ž      | 145/430 [3:17:05<6:22:43, 80.57s/it]
 34%|β–ˆβ–ˆβ–ˆβ–      | 146/430 [3:18:26<6:21:11, 80.53s/it]
 34%|β–ˆβ–ˆβ–ˆβ–      | 147/430 [3:19:46<6:19:49, 80.53s/it]
 34%|β–ˆβ–ˆβ–ˆβ–      | 148/430 [3:21:07<6:18:31, 80.54s/it]
 35%|β–ˆβ–ˆβ–ˆβ–      | 149/430 [3:22:27<6:17:16, 80.56s/it]
 35%|β–ˆβ–ˆβ–ˆβ–      | 150/430 [3:23:48<6:15:53, 80.55s/it]
                                                     
{'loss': 0.3674, 'learning_rate': 4.0366824080900185e-05, 'epoch': 3.48}

 35%|β–ˆβ–ˆβ–ˆβ–      | 150/430 [3:23:48<6:15:53, 80.55s/it]Saving model checkpoint to ./results/checkpoint-150
Configuration saved in ./results/checkpoint-150/config.json
Model weights saved in ./results/checkpoint-150/pytorch_model.bin
tokenizer config file saved in ./results/checkpoint-150/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-150/special_tokens_map.json
[2023-02-20 20:30:17,356] [INFO] [logging.py:75:log_dist] [Rank 0] [Torch] Checkpoint global_step151 is begin to save!
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
/opt/conda/lib/python3.8/site-packages/torch/nn/modules/module.py:1428: UserWarning: Positional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for details.
  warnings.warn(
[2023-02-20 20:30:17,359] [INFO] [logging.py:75:log_dist] [Rank 0] Saving model checkpoint: ./results/checkpoint-150/global_step151/mp_rank_00_model_states.pt
[2023-02-20 20:30:17,359] [INFO] [torch_checkpoint_engine.py:15:save] [Torch] Saving ./results/checkpoint-150/global_step151/mp_rank_00_model_states.pt...
[2023-02-20 20:30:18,018] [INFO] [torch_checkpoint_engine.py:17:save] [Torch] Saved ./results/checkpoint-150/global_step151/mp_rank_00_model_states.pt.
[2023-02-20 20:30:18,019] [INFO] [torch_checkpoint_engine.py:15:save] [Torch] Saving ./results/checkpoint-150/global_step151/zero_pp_rank_0_mp_rank_00_optim_states.pt...
[2023-02-20 20:30:18,223] [INFO] [torch_checkpoint_engine.py:17:save] [Torch] Saved ./results/checkpoint-150/global_step151/zero_pp_rank_0_mp_rank_00_optim_states.pt.
[2023-02-20 20:30:18,223] [INFO] [engine.py:3407:_save_zero_checkpoint] zero checkpoint saved ./results/checkpoint-150/global_step151/zero_pp_rank_0_mp_rank_00_optim_states.pt
[2023-02-20 20:30:18,224] [INFO] [torch_checkpoint_engine.py:27:commit] [Torch] Checkpoint global_step151 is ready now!
Deleting older checkpoint [results/checkpoint-45] due to args.save_total_limit

 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 151/430 [3:25:10<6:16:59, 81.07s/it]
 35%|β–ˆβ–ˆβ–ˆβ–Œ      | 152/430 [3:26:31<6:14:42, 80.87s/it]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 153/430 [3:27:51<6:12:50, 80.76s/it]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 154/430 [3:29:11<6:11:03, 80.67s/it]
 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 155/430 [3:30:32<6:09:25, 80.60s/it]
                                                     
{'loss': 0.3634, 'learning_rate': 4.062891760247626e-05, 'epoch': 3.6}

 36%|β–ˆβ–ˆβ–ˆβ–Œ      | 155/430 [3:30:32<6:09:25, 80.60s/it]
 36%|β–ˆβ–ˆβ–ˆβ–‹      | 156/430 [3:31:52<6:07:55, 80.57s/it]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 157/430 [3:33:13<6:07:08, 80.69s/it]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 158/430 [3:34:34<6:05:33, 80.64s/it]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 159/430 [3:35:54<6:04:05, 80.61s/it]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 160/430 [3:37:15<6:02:37, 80.58s/it]
                                                     
{'loss': 0.3622, 'learning_rate': 4.0882741795693975e-05, 'epoch': 3.71}

 37%|β–ˆβ–ˆβ–ˆβ–‹      | 160/430 [3:37:15<6:02:37, 80.58s/it]
 37%|β–ˆβ–ˆβ–ˆβ–‹      | 161/430 [3:38:36<6:01:14, 80.58s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 162/430 [3:39:56<6:00:01, 80.60s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 163/430 [3:41:17<5:59:32, 80.80s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 164/430 [3:42:38<5:58:27, 80.86s/it]
 38%|β–ˆβ–ˆβ–ˆβ–Š      | 165/430 [3:43:59<5:56:38, 80.75s/it]
                                                     
{'loss': 0.3545, 'learning_rate': 4.1128802551961496e-05, 'epoch': 3.83}

 38%|β–ˆβ–ˆβ–ˆβ–Š      | 165/430 [3:43:59<5:56:38, 80.75s/it]
 39%|β–ˆβ–ˆβ–ˆβ–Š      | 166/430 [3:45:20<5:55:05, 80.70s/it]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 167/430 [3:46:40<5:53:32, 80.66s/it]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 168/430 [3:48:01<5:52:04, 80.63s/it]
 39%|β–ˆβ–ˆβ–ˆβ–‰      | 169/430 [3:49:21<5:50:54, 80.67s/it]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 170/430 [3:50:42<5:49:25, 80.64s/it]
                                                     
{'loss': 0.355, 'learning_rate': 4.136756071398985e-05, 'epoch': 3.94}

 40%|β–ˆβ–ˆβ–ˆβ–‰      | 170/430 [3:50:42<5:49:25, 80.64s/it]
 40%|β–ˆβ–ˆβ–ˆβ–‰      | 171/430 [3:52:03<5:48:04, 80.64s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 172/430 [3:53:23<5:46:33, 80.59s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 173/430 [3:55:33<6:48:29, 95.37s/it]
 40%|β–ˆβ–ˆβ–ˆβ–ˆ      | 174/430 [3:56:53<6:27:52, 90.91s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 175/430 [3:58:14<6:13:17, 87.83s/it]
                                                     
{'loss': 0.3978, 'learning_rate': 4.164502129979834e-05, 'epoch': 4.07}

 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 175/430 [3:58:14<6:13:17, 87.83s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 176/430 [3:59:35<6:02:43, 85.68s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆ      | 177/430 [4:00:55<5:54:43, 84.12s/it]
 41%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 178/430 [4:02:16<5:48:45, 83.04s/it]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 179/430 [4:03:36<5:44:09, 82.27s/it]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 180/430 [4:04:57<5:40:41, 81.77s/it]
                                                     
{'loss': 0.3492, 'learning_rate': 4.186914608821452e-05, 'epoch': 4.18}

 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 180/430 [4:04:57<5:40:41, 81.77s/it]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 181/430 [4:06:17<5:37:50, 81.41s/it]
 42%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 182/430 [4:07:38<5:35:22, 81.14s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 183/430 [4:08:58<5:33:16, 80.96s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 184/430 [4:10:19<5:31:25, 80.83s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 185/430 [4:11:40<5:29:40, 80.74s/it]
                                                     
{'loss': 0.3483, 'learning_rate': 4.208719628018618e-05, 'epoch': 4.3}

 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 185/430 [4:11:40<5:29:40, 80.74s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 186/430 [4:13:00<5:28:03, 80.67s/it]
 43%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 187/430 [4:14:21<5:26:44, 80.68s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–Ž     | 188/430 [4:15:41<5:25:24, 80.68s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 189/430 [4:17:02<5:23:51, 80.63s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 190/430 [4:18:22<5:22:20, 80.58s/it]
                                                     
{'loss': 0.3443, 'learning_rate': 4.229949249223448e-05, 'epoch': 4.41}

 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 190/430 [4:18:22<5:22:20, 80.58s/it]
 44%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 191/430 [4:19:43<5:20:53, 80.56s/it]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 192/430 [4:21:03<5:19:33, 80.56s/it]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–     | 193/430 [4:22:24<5:18:45, 80.70s/it]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 194/430 [4:23:45<5:17:14, 80.65s/it]
 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 195/430 [4:25:06<5:15:47, 80.63s/it]
                                                     
{'loss': 0.3448, 'learning_rate': 4.250633060899951e-05, 'epoch': 4.53}

 45%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 195/430 [4:25:06<5:15:47, 80.63s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 196/430 [4:26:26<5:14:14, 80.57s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 197/430 [4:27:47<5:12:46, 80.54s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–Œ     | 198/430 [4:29:07<5:11:27, 80.55s/it]
 46%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 199/430 [4:30:28<5:10:06, 80.55s/it]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 200/430 [4:31:48<5:08:45, 80.55s/it]
                                                     
{'loss': 0.3371, 'learning_rate': 4.2707984263311035e-05, 'epoch': 4.64}

 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 200/430 [4:31:48<5:08:45, 80.55s/it]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 201/430 [4:33:09<5:07:25, 80.55s/it]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 202/430 [4:34:29<5:06:03, 80.54s/it]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 203/430 [4:35:50<5:04:47, 80.56s/it]
 47%|β–ˆβ–ˆβ–ˆβ–ˆβ–‹     | 204/430 [4:37:10<5:03:25, 80.55s/it]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 205/430 [4:38:31<5:02:05, 80.56s/it]
                                                     
{'loss': 0.3362, 'learning_rate': 4.290470701297542e-05, 'epoch': 4.76}

 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 205/430 [4:38:31<5:02:05, 80.56s/it]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 206/430 [4:39:52<5:00:48, 80.57s/it]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 207/430 [4:41:12<4:59:23, 80.55s/it]
 48%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 208/430 [4:42:33<4:58:04, 80.56s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–Š     | 209/430 [4:43:53<4:56:40, 80.54s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 210/430 [4:45:14<4:55:18, 80.54s/it]
                                                     
{'loss': 0.3333, 'learning_rate': 4.3096734257723994e-05, 'epoch': 4.87}

 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 210/430 [4:45:14<4:55:18, 80.54s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 211/430 [4:46:35<4:54:27, 80.67s/it]
 49%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 212/430 [4:47:56<4:53:37, 80.81s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 213/430 [4:49:16<4:52:03, 80.75s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–‰     | 214/430 [4:50:37<4:50:43, 80.75s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 215/430 [4:51:58<4:49:04, 80.67s/it]
                                                     
{'loss': 0.3304, 'learning_rate': 4.3284284932676175e-05, 'epoch': 4.99}

 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 215/430 [4:51:58<4:49:04, 80.67s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 216/430 [4:54:08<5:40:27, 95.45s/it]
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 217/430 [4:55:28<5:22:58, 90.98s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 218/430 [4:56:49<5:10:22, 87.84s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 219/430 [4:58:09<5:01:10, 85.64s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 220/430 [4:59:30<4:54:31, 84.15s/it]
                                                     
{'loss': 0.3689, 'learning_rate': 4.350372288827778e-05, 'epoch': 5.11}

 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆ     | 220/430 [4:59:30<4:54:31, 84.15s/it]
 51%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 221/430 [5:00:50<4:49:24, 83.09s/it]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 222/430 [5:02:11<4:45:37, 82.39s/it]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 223/430 [5:03:32<4:42:20, 81.84s/it]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 224/430 [5:04:52<4:39:35, 81.44s/it]
 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 225/430 [5:06:13<4:37:20, 81.17s/it]
                                                     
{'loss': 0.3281, 'learning_rate': 4.3682123980857955e-05, 'epoch': 5.23}

 52%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 225/430 [5:06:13<4:37:20, 81.17s/it]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 226/430 [5:07:33<4:35:24, 81.00s/it]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 227/430 [5:08:54<4:33:33, 80.85s/it]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 228/430 [5:10:14<4:31:47, 80.73s/it]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 229/430 [5:11:35<4:30:14, 80.67s/it]
 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 230/430 [5:12:55<4:28:43, 80.62s/it]
                                                     
{'loss': 0.321, 'learning_rate': 4.3856654894696003e-05, 'epoch': 5.34}

 53%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 230/430 [5:12:55<4:28:43, 80.62s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž    | 231/430 [5:14:16<4:27:16, 80.58s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 232/430 [5:15:36<4:25:49, 80.55s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 233/430 [5:16:57<4:24:23, 80.53s/it]
 54%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 234/430 [5:18:17<4:22:58, 80.50s/it]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 235/430 [5:19:38<4:21:32, 80.48s/it]
                                                     
{'loss': 0.3211, 'learning_rate': 4.402747998752177e-05, 'epoch': 5.46}

 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 235/430 [5:19:38<4:21:32, 80.48s/it]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–    | 236/430 [5:20:58<4:20:16, 80.50s/it]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 237/430 [5:22:19<4:18:53, 80.49s/it]
 55%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 238/430 [5:23:39<4:17:33, 80.49s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 239/430 [5:25:00<4:16:10, 80.47s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 240/430 [5:26:20<4:14:47, 80.46s/it]
                                                     
{'loss': 0.3177, 'learning_rate': 4.41947533645377e-05, 'epoch': 5.57}

 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 240/430 [5:26:20<4:14:47, 80.46s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ    | 241/430 [5:27:40<4:13:24, 80.45s/it]
 56%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 242/430 [5:29:01<4:12:06, 80.46s/it]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 243/430 [5:30:21<4:10:48, 80.47s/it]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 244/430 [5:31:42<4:09:29, 80.48s/it]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 245/430 [5:33:02<4:08:08, 80.48s/it]
                                                     
{'loss': 0.3178, 'learning_rate': 4.435861971380601e-05, 'epoch': 5.69}

 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 245/430 [5:33:02<4:08:08, 80.48s/it]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 246/430 [5:34:23<4:06:46, 80.47s/it]
 57%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹    | 247/430 [5:35:44<4:05:59, 80.65s/it]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 248/430 [5:37:04<4:04:28, 80.59s/it]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 249/430 [5:38:25<4:03:06, 80.59s/it]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 250/430 [5:39:46<4:01:45, 80.59s/it]
                                                     
{'loss': 0.3147, 'learning_rate': 4.451921505824621e-05, 'epoch': 5.8}

 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 250/430 [5:39:46<4:01:45, 80.59s/it]
 58%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 251/430 [5:41:06<4:00:32, 80.63s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š    | 252/430 [5:42:27<3:59:37, 80.77s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 253/430 [5:43:48<3:58:03, 80.70s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 254/430 [5:45:08<3:56:32, 80.64s/it]
 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 255/430 [5:46:29<3:55:05, 80.60s/it]
                                                     
{'loss': 0.3131, 'learning_rate': 4.467666743403693e-05, 'epoch': 5.92}

 59%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 255/430 [5:46:29<3:55:05, 80.60s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 256/430 [5:47:50<3:54:05, 80.72s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 257/430 [5:49:10<3:52:33, 80.65s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 258/430 [5:50:31<3:51:09, 80.64s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 259/430 [5:52:40<4:31:29, 95.26s/it]
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 260/430 [5:54:01<4:17:26, 90.86s/it]
                                                     
{'loss': 0.3454, 'learning_rate': 4.483109750389942e-05, 'epoch': 6.05}

 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 260/430 [5:54:01<4:17:26, 90.86s/it]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 261/430 [5:55:22<4:07:10, 87.75s/it]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 262/430 [5:56:42<3:59:47, 85.64s/it]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ    | 263/430 [5:58:03<3:54:02, 84.09s/it]
 61%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 264/430 [5:59:23<3:49:37, 83.00s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 265/430 [6:00:44<3:46:08, 82.23s/it]
                                                     
{'loss': 0.3044, 'learning_rate': 4.498261911262221e-05, 'epoch': 6.16}

 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 265/430 [6:00:44<3:46:08, 82.23s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 266/430 [6:02:04<3:43:19, 81.70s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 267/430 [6:03:25<3:40:59, 81.34s/it]
 62%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 268/430 [6:04:45<3:39:08, 81.16s/it]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 269/430 [6:06:06<3:37:16, 80.97s/it]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 270/430 [6:07:26<3:35:33, 80.84s/it]
                                                     
{'loss': 0.3066, 'learning_rate': 4.513133979123424e-05, 'epoch': 6.28}

 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 270/430 [6:07:26<3:35:33, 80.84s/it]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 271/430 [6:08:47<3:34:06, 80.80s/it]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 272/430 [6:10:08<3:32:33, 80.72s/it]
 63%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 273/430 [6:11:28<3:31:01, 80.65s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž   | 274/430 [6:12:49<3:29:32, 80.60s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 275/430 [6:14:09<3:28:03, 80.54s/it]
                                                     
{'loss': 0.301, 'learning_rate': 4.527736121541934e-05, 'epoch': 6.39}

 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 275/430 [6:14:09<3:28:03, 80.54s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 276/430 [6:15:29<3:26:41, 80.53s/it]
 64%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 277/430 [6:16:50<3:25:18, 80.51s/it]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 278/430 [6:18:10<3:23:55, 80.50s/it]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–   | 279/430 [6:19:31<3:22:38, 80.52s/it]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 280/430 [6:20:52<3:21:30, 80.60s/it]
                                                     
{'loss': 0.2992, 'learning_rate': 4.5420779623067014e-05, 'epoch': 6.5}

 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 280/430 [6:20:52<3:21:30, 80.60s/it]
 65%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 281/430 [6:22:12<3:20:06, 80.58s/it]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 282/430 [6:23:33<3:18:45, 80.58s/it]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 283/430 [6:24:54<3:17:25, 80.58s/it]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ   | 284/430 [6:26:14<3:16:05, 80.59s/it]
 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 285/430 [6:27:35<3:14:40, 80.56s/it]
                                                     
{'loss': 0.2963, 'learning_rate': 4.55616861952542e-05, 'epoch': 6.62}

 66%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 285/430 [6:27:35<3:14:40, 80.56s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 286/430 [6:28:55<3:13:19, 80.55s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 287/430 [6:30:16<3:11:55, 80.53s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 288/430 [6:31:37<3:10:52, 80.65s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 289/430 [6:32:57<3:09:26, 80.62s/it]
 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 290/430 [6:34:18<3:07:59, 80.57s/it]
                                                     
{'loss': 0.2912, 'learning_rate': 4.5700167404435284e-05, 'epoch': 6.73}

 67%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹   | 290/430 [6:34:18<3:07:59, 80.57s/it]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 291/430 [6:35:39<3:06:56, 80.69s/it]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 292/430 [6:36:59<3:05:26, 80.63s/it]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 293/430 [6:38:20<3:04:03, 80.61s/it]
 68%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 294/430 [6:39:40<3:02:37, 80.57s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 295/430 [6:41:01<3:01:16, 80.56s/it]
                                                     
{'loss': 0.2916, 'learning_rate': 4.583630533316995e-05, 'epoch': 6.85}

 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š   | 295/430 [6:41:01<3:01:16, 80.56s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 296/430 [6:42:21<2:59:53, 80.55s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 297/430 [6:43:42<2:58:55, 80.72s/it]
 69%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 298/430 [6:45:03<2:57:26, 80.66s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 299/430 [6:46:23<2:55:57, 80.59s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 300/430 [6:47:44<2:54:31, 80.55s/it]
                                                     
{'loss': 0.2918, 'learning_rate': 4.597017796633075e-05, 'epoch': 6.96}

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰   | 300/430 [6:47:44<2:54:31, 80.55s/it]Saving model checkpoint to ./results/checkpoint-300
Configuration saved in ./results/checkpoint-300/config.json
Model weights saved in ./results/checkpoint-300/pytorch_model.bin
tokenizer config file saved in ./results/checkpoint-300/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-300/special_tokens_map.json
[2023-02-20 23:54:13,030] [INFO] [logging.py:75:log_dist] [Rank 0] [Torch] Checkpoint global_step303 is begin to save!
[2023-02-20 23:54:13,032] [INFO] [logging.py:75:log_dist] [Rank 0] Saving model checkpoint: ./results/checkpoint-300/global_step303/mp_rank_00_model_states.pt
[2023-02-20 23:54:13,032] [INFO] [torch_checkpoint_engine.py:15:save] [Torch] Saving ./results/checkpoint-300/global_step303/mp_rank_00_model_states.pt...
[2023-02-20 23:54:13,586] [INFO] [torch_checkpoint_engine.py:17:save] [Torch] Saved ./results/checkpoint-300/global_step303/mp_rank_00_model_states.pt.
[2023-02-20 23:54:13,587] [INFO] [torch_checkpoint_engine.py:15:save] [Torch] Saving ./results/checkpoint-300/global_step303/zero_pp_rank_0_mp_rank_00_optim_states.pt...
[2023-02-20 23:54:13,739] [INFO] [torch_checkpoint_engine.py:17:save] [Torch] Saved ./results/checkpoint-300/global_step303/zero_pp_rank_0_mp_rank_00_optim_states.pt.
[2023-02-20 23:54:13,740] [INFO] [engine.py:3407:_save_zero_checkpoint] zero checkpoint saved ./results/checkpoint-300/global_step303/zero_pp_rank_0_mp_rank_00_optim_states.pt
[2023-02-20 23:54:13,740] [INFO] [torch_checkpoint_engine.py:27:commit] [Torch] Checkpoint global_step303 is ready now!
Deleting older checkpoint [results/checkpoint-150] due to args.save_total_limit

 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 301/430 [6:49:06<2:54:08, 80.99s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 302/430 [6:51:15<3:24:02, 95.64s/it]
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 303/430 [6:52:36<3:12:48, 91.09s/it]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 304/430 [6:53:56<3:04:36, 87.91s/it]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 305/430 [6:55:17<2:58:30, 85.68s/it]
                                                     
{'loss': 0.3224, 'learning_rate': 4.612793909203516e-05, 'epoch': 7.09}

 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 305/430 [6:55:17<2:58:30, 85.68s/it]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ   | 306/430 [6:56:38<2:54:00, 84.19s/it]
 71%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 307/430 [6:57:59<2:50:44, 83.29s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 308/430 [6:59:19<2:47:40, 82.46s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 309/430 [7:00:40<2:45:10, 81.91s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 310/430 [7:02:00<2:42:57, 81.48s/it]
                                                     
{'loss': 0.2838, 'learning_rate': 4.6257084073957534e-05, 'epoch': 7.21}

 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 310/430 [7:02:00<2:42:57, 81.48s/it]
 72%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 311/430 [7:03:21<2:41:01, 81.18s/it]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 312/430 [7:04:41<2:39:14, 80.97s/it]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 313/430 [7:06:02<2:37:35, 80.82s/it]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 314/430 [7:07:22<2:36:02, 80.71s/it]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 315/430 [7:08:43<2:34:33, 80.64s/it]
                                                     
{'loss': 0.2803, 'learning_rate': 4.6384188765246125e-05, 'epoch': 7.32}

 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 315/430 [7:08:43<2:34:33, 80.64s/it]
 73%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 316/430 [7:10:03<2:33:10, 80.62s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž  | 317/430 [7:11:24<2:31:46, 80.59s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 318/430 [7:12:44<2:30:23, 80.56s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 319/430 [7:14:05<2:29:01, 80.56s/it]
 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 320/430 [7:15:26<2:27:42, 80.57s/it]
                                                     
{'loss': 0.2839, 'learning_rate': 4.6509316631405805e-05, 'epoch': 7.44}

 74%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 320/430 [7:15:26<2:27:42, 80.57s/it]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 321/430 [7:16:46<2:26:19, 80.54s/it]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–  | 322/430 [7:18:07<2:24:58, 80.54s/it]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 323/430 [7:19:27<2:23:39, 80.55s/it]
 75%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 324/430 [7:20:48<2:22:15, 80.53s/it]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 325/430 [7:22:08<2:20:55, 80.53s/it]
                                                     
{'loss': 0.2776, 'learning_rate': 4.663252822198809e-05, 'epoch': 7.55}

 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 325/430 [7:22:08<2:20:55, 80.53s/it]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 326/430 [7:23:29<2:19:34, 80.52s/it]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ  | 327/430 [7:24:49<2:18:11, 80.50s/it]
 76%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 328/430 [7:26:10<2:16:52, 80.52s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 329/430 [7:27:30<2:15:32, 80.52s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 330/430 [7:28:51<2:14:13, 80.53s/it]
                                                     
{'loss': 0.2763, 'learning_rate': 4.675388134653313e-05, 'epoch': 7.66}

 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 330/430 [7:28:51<2:14:13, 80.53s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 331/430 [7:30:11<2:12:57, 80.58s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 332/430 [7:31:32<2:11:44, 80.66s/it]
 77%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹  | 333/430 [7:32:53<2:10:32, 80.75s/it]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 334/430 [7:34:14<2:09:04, 80.67s/it]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 335/430 [7:35:34<2:07:39, 80.62s/it]
                                                     
{'loss': 0.2731, 'learning_rate': 4.687343123743873e-05, 'epoch': 7.78}

 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 335/430 [7:35:34<2:07:39, 80.62s/it]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 336/430 [7:36:55<2:06:30, 80.75s/it]
 78%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 337/430 [7:38:16<2:05:08, 80.73s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š  | 338/430 [7:39:36<2:03:41, 80.66s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 339/430 [7:40:57<2:02:15, 80.61s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 340/430 [7:42:17<2:00:50, 80.56s/it]
                                                     
{'loss': 0.271, 'learning_rate': 4.699123070090503e-05, 'epoch': 7.89}

 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 340/430 [7:42:17<2:00:50, 80.56s/it]
 79%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 341/430 [7:43:38<1:59:27, 80.53s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 342/430 [7:44:58<1:58:06, 80.53s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 343/430 [7:46:19<1:56:47, 80.55s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 344/430 [7:47:40<1:55:30, 80.59s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 345/430 [7:49:49<2:14:57, 95.26s/it]
                                                     
{'loss': 0.3009, 'learning_rate': 4.71073302569872e-05, 'epoch': 8.02}

 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 345/430 [7:49:49<2:14:57, 95.26s/it]
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 346/430 [7:51:10<2:07:10, 90.84s/it]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 347/430 [7:52:30<2:01:21, 87.73s/it]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 348/430 [7:53:51<1:56:55, 85.56s/it]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ  | 349/430 [7:55:11<1:53:26, 84.03s/it]
 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 350/430 [7:56:32<1:50:39, 83.00s/it]
                                                     
{'loss': 0.265, 'learning_rate': 4.7221778269686165e-05, 'epoch': 8.14}

 81%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 350/430 [7:56:32<1:50:39, 83.00s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 351/430 [7:57:52<1:48:17, 82.24s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 352/430 [7:59:13<1:46:14, 81.72s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 353/430 [8:00:34<1:44:40, 81.56s/it]
 82%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 354/430 [8:01:54<1:42:53, 81.22s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 355/430 [8:03:15<1:41:14, 80.99s/it]
                                                     
{'loss': 0.2651, 'learning_rate': 4.73346210679156e-05, 'epoch': 8.25}

 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 355/430 [8:03:15<1:41:14, 80.99s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 356/430 [8:04:36<1:39:57, 81.05s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 357/430 [8:05:56<1:38:25, 80.90s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 358/430 [8:07:17<1:36:55, 80.77s/it]
 83%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 359/430 [8:08:38<1:35:30, 80.71s/it]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 360/430 [8:09:58<1:34:03, 80.63s/it]
                                                     
{'loss': 0.2607, 'learning_rate': 4.744590305810234e-05, 'epoch': 8.37}

 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž | 360/430 [8:09:58<1:34:03, 80.63s/it]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 361/430 [8:11:18<1:32:39, 80.57s/it]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 362/430 [8:12:39<1:31:17, 80.55s/it]
 84%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 363/430 [8:13:59<1:29:56, 80.54s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 364/430 [8:15:20<1:28:34, 80.52s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 365/430 [8:16:40<1:27:12, 80.50s/it]
                                                     
{'loss': 0.2599, 'learning_rate': 4.7555666829105464e-05, 'epoch': 8.48}

 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 365/430 [8:16:40<1:27:12, 80.50s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 366/430 [8:18:01<1:25:49, 80.47s/it]
 85%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 367/430 [8:19:21<1:24:27, 80.44s/it]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 368/430 [8:20:42<1:23:10, 80.49s/it]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 369/430 [8:22:02<1:21:48, 80.47s/it]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 370/430 [8:23:23<1:20:29, 80.49s/it]
                                                     
{'loss': 0.2564, 'learning_rate': 4.7663953250074004e-05, 'epoch': 8.6}

 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 370/430 [8:23:23<1:20:29, 80.49s/it]
 86%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 371/430 [8:24:43<1:19:09, 80.51s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 372/430 [8:26:04<1:17:55, 80.61s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 373/430 [8:27:25<1:16:32, 80.57s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 374/430 [8:28:45<1:15:10, 80.55s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 375/430 [8:30:06<1:13:49, 80.54s/it]
                                                     
{'loss': 0.2584, 'learning_rate': 4.777080156180637e-05, 'epoch': 8.71}

 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 375/430 [8:30:06<1:13:49, 80.54s/it]
 87%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹ | 376/430 [8:31:26<1:12:29, 80.54s/it]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 377/430 [8:32:47<1:11:07, 80.53s/it]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 378/430 [8:34:07<1:09:47, 80.53s/it]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 379/430 [8:35:28<1:08:26, 80.52s/it]
 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 380/430 [8:36:48<1:07:07, 80.55s/it]
                                                     
{'loss': 0.2578, 'learning_rate': 4.7876249462122306e-05, 'epoch': 8.83}

 88%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 380/430 [8:36:48<1:07:07, 80.55s/it]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 381/430 [8:38:09<1:05:47, 80.56s/it]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 382/430 [8:39:29<1:04:25, 80.53s/it]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 383/430 [8:40:50<1:03:04, 80.53s/it]
 89%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 384/430 [8:42:10<1:01:43, 80.51s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 385/430 [8:43:31<1:00:22, 80.49s/it]
                                                     
{'loss': 0.2495, 'learning_rate': 4.798033318571224e-05, 'epoch': 8.94}

 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 385/430 [8:43:31<1:00:22, 80.49s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 386/430 [8:44:52<59:06, 80.61s/it]  
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 387/430 [8:46:12<57:43, 80.55s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 388/430 [8:48:22<1:06:42, 95.31s/it]
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 389/430 [8:49:42<1:02:05, 90.85s/it]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 390/430 [8:51:03<58:29, 87.73s/it]  
                                                   
{'loss': 0.2808, 'learning_rate': 4.810348191078279e-05, 'epoch': 9.07}

 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 390/430 [8:51:03<58:29, 87.73s/it]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 391/430 [8:52:23<55:37, 85.58s/it]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 392/430 [8:53:44<53:14, 84.05s/it]
 91%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 393/430 [8:55:04<51:10, 82.98s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 394/430 [8:56:25<49:25, 82.39s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 395/430 [8:57:46<47:43, 81.82s/it]
                                                   
{'loss': 0.2463, 'learning_rate': 4.82046852530342e-05, 'epoch': 9.18}

 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 395/430 [8:57:46<47:43, 81.82s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 396/430 [8:59:06<46:09, 81.45s/it]
 92%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 397/430 [9:00:27<44:37, 81.15s/it]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 398/430 [9:01:47<43:09, 80.93s/it]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 399/430 [9:03:08<41:44, 80.80s/it]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 400/430 [9:04:28<40:20, 80.70s/it]
                                                   
{'loss': 0.2418, 'learning_rate': 4.830463137837162e-05, 'epoch': 9.3}

 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 400/430 [9:04:28<40:20, 80.70s/it]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 401/430 [9:05:49<38:58, 80.65s/it]
 93%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 402/430 [9:07:09<37:38, 80.65s/it]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Ž| 403/430 [9:08:30<36:16, 80.59s/it]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 404/430 [9:09:50<34:54, 80.56s/it]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 405/430 [9:11:11<33:33, 80.54s/it]
                                                   
{'loss': 0.2451, 'learning_rate': 4.8403351139919656e-05, 'epoch': 9.41}

 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 405/430 [9:11:11<33:33, 80.54s/it]
 94%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 406/430 [9:12:32<32:14, 80.61s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 407/430 [9:13:52<30:52, 80.56s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–| 408/430 [9:15:12<29:31, 80.54s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 409/430 [9:16:33<28:11, 80.54s/it]
 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 410/430 [9:17:53<26:50, 80.51s/it]
                                                   
{'loss': 0.2403, 'learning_rate': 4.850087426881512e-05, 'epoch': 9.53}

 95%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 410/430 [9:17:53<26:50, 80.51s/it]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 411/430 [9:19:15<25:33, 80.70s/it]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 412/430 [9:20:35<24:11, 80.65s/it]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ| 413/430 [9:21:56<22:50, 80.61s/it]
 96%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 414/430 [9:23:16<21:28, 80.56s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 415/430 [9:24:37<20:09, 80.62s/it]
                                                   
{'loss': 0.2411, 'learning_rate': 4.859722942795827e-05, 'epoch': 9.64}

 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 415/430 [9:24:37<20:09, 80.62s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 416/430 [9:25:57<18:48, 80.58s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 417/430 [9:27:18<17:27, 80.54s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 418/430 [9:28:38<16:06, 80.54s/it]
 97%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‹| 419/430 [9:29:59<14:45, 80.51s/it]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 420/430 [9:31:20<13:26, 80.65s/it]
                                                   
{'loss': 0.2373, 'learning_rate': 4.8692444262583224e-05, 'epoch': 9.76}

 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 420/430 [9:31:20<13:26, 80.65s/it]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 421/430 [9:32:40<12:05, 80.59s/it]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 422/430 [9:34:01<10:44, 80.56s/it]
 98%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 423/430 [9:35:21<09:23, 80.53s/it]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š| 424/430 [9:36:42<08:03, 80.54s/it]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 425/430 [9:38:02<06:42, 80.52s/it]
                                                   
{'loss': 0.2356, 'learning_rate': 4.8786545447870833e-05, 'epoch': 9.87}

 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 425/430 [9:38:02<06:42, 80.52s/it]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 426/430 [9:39:23<05:22, 80.52s/it]
 99%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 427/430 [9:40:43<04:01, 80.52s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 428/430 [9:42:04<02:41, 80.53s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰| 429/430 [9:43:24<01:20, 80.55s/it]
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 430/430 [9:44:45<00:00, 80.58s/it]
                                                   
{'loss': 0.2362, 'learning_rate': 4.8879558733809264e-05, 'epoch': 9.99}

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 430/430 [9:44:45<00:00, 80.58s/it]

Training completed. Do not forget to share your model on huggingface.co/models =)


Time: 35085.85Time: 35085.80
Time: 35085.78
Samples/second: 33.41Time: 35085.88
Samples/second: 33.41

Samples/second: 33.41
Samples/second: 33.41


                                                   
{'train_runtime': 35085.4942, 'train_samples_per_second': 33.413, 'train_steps_per_second': 0.012, 'train_loss': 0.412373732966046, 'epoch': 9.99}
Time: 35085.79
Time: 35085.76Samples/second: 33.41

Samples/second: 33.41

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 430/430 [9:44:45<00:00, 80.58s/it]GPU memory occupied: 43825 MB.
GPU memory occupied: 43825 MB.
GPU memory occupied: 43825 MB.
GPU memory occupied: 43825 MB.
GPU memory occupied: 43825 MB.
GPU memory occupied: 43825 MB.

100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 430/430 [9:44:45<00:00, 81.59s/it]
Time: 35085.49
Samples/second: 33.41
GPU memory occupied: 43825 MB.
Configuration saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/final_checkpoint/config.json
Model weights saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/final_checkpoint/pytorch_model.bin
tokenizer config file saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/final_checkpoint/tokenizer/tokenizer_config.json
Special tokens file saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/final_checkpoint/tokenizer/special_tokens_map.json
Saving model checkpoint to experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/trainer_final_checkpoint
Configuration saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/trainer_final_checkpoint/config.json
Model weights saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/trainer_final_checkpoint/pytorch_model.bin
tokenizer config file saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/trainer_final_checkpoint/tokenizer_config.json
Special tokens file saved in experiments/2023-02-21-b0010c97cb1f06debca911602ea05b6ff85a8270fb9487d27b3d52eb4eb29e9e/trainer_final_checkpoint/special_tokens_map.json
Traceback (most recent call last):
  File "tune_gpt.py", line 227, in <module>
    trainer.save_state(trainer_save_dir)
TypeError: save_state() takes 1 positional argument but 2 were given
[2023-02-21 02:51:15,357] [INFO] [launch.py:350:main] Process 31459 exits successfully.
[2023-02-21 02:51:15,358] [INFO] [launch.py:350:main] Process 31463 exits successfully.
[2023-02-21 02:51:16,360] [INFO] [launch.py:350:main] Process 31486 exits successfully.
[2023-02-21 02:51:16,360] [INFO] [launch.py:350:main] Process 31471 exits successfully.
[2023-02-21 02:51:16,360] [INFO] [launch.py:350:main] Process 31478 exits successfully.
[2023-02-21 02:51:16,361] [INFO] [launch.py:350:main] Process 31490 exits successfully.
[2023-02-21 02:51:17,362] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31458
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31459
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31463
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31471
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31478
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31486
[2023-02-21 02:51:17,363] [INFO] [launch.py:318:sigkill_handler] Killing subprocess 31490
[2023-02-21 02:51:17,364] [ERROR] [launch.py:324:sigkill_handler] ['/opt/conda/bin/python3', '-u', 'tune_gpt.py', '--local_rank=6', '--deepspeed', 'deepspeed.json', '--upload-experiment'] exits with return code = 1
/opt/conda/lib/python3.8/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
  from pandas import MultiIndex, Int64Index