--- tags: - generated_from_trainer metrics: - precision - recall model-index: - name: deberta-pii-finetuned results: [] --- # deberta-pii-finetuned This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0033 - F Beta: 0.7862 - Precision: 0.9914 - Recall: 0.7797 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F Beta | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:| | 0.0001 | 0.27 | 70 | 0.0119 | 0.3263 | 0.9775 | 0.3178 | | 0.002 | 0.54 | 140 | 0.0044 | 0.7110 | 0.9904 | 0.7030 | | 0.0003 | 0.82 | 210 | 0.0033 | 0.7862 | 0.9914 | 0.7797 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0