File size: 6,197 Bytes
ce0c0a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2e0332
d56315c
f2e0332
 
 
 
d56315c
 
 
 
 
f2e0332
d56315c
 
 
 
f2e0332
 
d56315c
f2e0332
 
d56315c
f2e0332
 
 
 
d56315c
f2e0332
 
d56315c
 
 
 
 
 
 
 
 
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
d04a1c4
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
 
 
1425e7c
d56315c
 
 
 
5a0bbf6
 
 
 
91fb911
 
5a0bbf6
 
 
 
 
 
 
 
 
 
 
d56315c
 
 
 
 
 
 
 
 
 
 
 
 
91fb911
d56315c
 
6a3f427
d56315c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
---
license: cc-by-nc-4.0
language:
- ar
- cs
- de
- el
- en
- fr
- hi
- he
- it
- id
- ja
- ko
- nl
- fa
- pl
- pt
- ro
- ru
- es
- tr
- uk
- vi
- zh
---
# Model Checkpoints for Multilingual Machine-Generated Text Portion Detection

## Model Details

### Model Description
- Developed by: 1-800-SHARED-TASKS
- Funded by: Cohere's Research Compute Grant (July 2024)
- Model type: Transformer-based for multilingual text portion detection
- Languages (NLP): 23 languages (expanding to 102)
- License: Non-commercial; derivatives must remain non-commercial with proper attribution

### Model Sources
- **Code Repository:** [Github Placeholder]
- **Paper:** [ACL Anthology Placeholder]
- **Presentation:** [Multi-lingual Machine-Generated Text Portion(s) Detection](https://static1.squarespace.com/static/659ac5de66fdf20e1d607f2e/t/66d977a49597da76b6c260a1/1725527974250/MMGTD-Cohere.pdf)

## Uses
The dataset is suitable for machine-generated text portion detection, token classification tasks, and other linguistic tasks. The methods applied here aim to improve the accuracy of detecting which portions of text are machine-generated, particularly in multilingual contexts. The dataset could be beneficial for research and development in areas like AI-generated text moderation, natural language processing, and understanding the integration of AI in content generation.

## Training Details
The model was trained on a dataset consisting of approximately 330k text samples from LLMs Command-R-Plus (100k) and Aya-23-35B (230k). The dataset includes 10k samples per language for each LLM, with a distribution of 10% fully human-written texts, 10% entirely machine-generated texts, and 80% mixed cases.

## Evaluation

### Testing Data, Factors & Metrics
The model was evaluated on a multilingual dataset covering 23 languages. Metrics include Accuracy, Precision, Recall, and F1 Score at the word level (character level for Japanese and Chinese).

### Results
Here are the word-level metrics for each language and ** character-level metrics for Japanese (JPN) and Chinese (ZHO):

<table>
  <tr>
    <th>Language</th>
    <th>Accuracy</th>
    <th>Precision</th>
    <th>Recall</th>
    <th>F1 Score</th>
  </tr>
  <tr>
    <td>ARA</td>
    <td>0.923</td>
    <td>0.832</td>
    <td>0.992</td>
    <td>0.905</td>
  </tr>
  <tr>
    <td>CES</td>
    <td>0.884</td>
    <td>0.869</td>
    <td>0.975</td>
    <td>0.919</td>
  </tr>
  <tr>
    <td>DEU</td>
    <td>0.917</td>
    <td>0.895</td>
    <td>0.983</td>
    <td>0.937</td>
  </tr>
  <tr>
    <td>ELL</td>
    <td>0.929</td>
    <td>0.905</td>
    <td>0.984</td>
    <td>0.943</td>
  </tr>
  <tr>
    <td>ENG</td>
    <td>0.917</td>
    <td>0.818</td>
    <td>0.986</td>
    <td>0.894</td>
  </tr>
  <tr>
    <td>FRA</td>
    <td>0.927</td>
    <td>0.929</td>
    <td>0.966</td>
    <td>0.947</td>
  </tr>
  <tr>
    <td>HEB</td>
    <td>0.963</td>
    <td>0.961</td>
    <td>0.988</td>
    <td>0.974</td>
  </tr>
  <tr>
    <td>HIN</td>
    <td>0.890</td>
    <td>0.736</td>
    <td>0.975</td>
    <td>0.839</td>
  </tr>
  <tr>
    <td>IND</td>
    <td>0.861</td>
    <td>0.794</td>
    <td>0.988</td>
    <td>0.881</td>
  </tr>
  <tr>
    <td>ITA</td>
    <td>0.941</td>
    <td>0.906</td>
    <td>0.989</td>
    <td>0.946</td>
  </tr>
  <tr>
    <td>JPN**</td>
    <td>0.832</td>
    <td>0.747</td>
    <td>0.965</td>
    <td>0.842</td>
  </tr>
  <tr>
    <td>KOR</td>
    <td>0.937</td>
    <td>0.918</td>
    <td>0.992</td>
    <td>0.954</td>
  </tr>
  <tr>
    <td>NLD</td>
    <td>0.916</td>
    <td>0.872</td>
    <td>0.985</td>
    <td>0.925</td>
  </tr>
  <tr>
    <td>PES</td>
    <td>0.822</td>
    <td>0.668</td>
    <td>0.972</td>
    <td>0.792</td>
  </tr>
  <tr>
    <td>POL</td>
    <td>0.903</td>
    <td>0.884</td>
    <td>0.986</td>
    <td>0.932</td>
  </tr>
  <tr>
    <td>POR</td>
    <td>0.805</td>
    <td>0.679</td>
    <td>0.987</td>
    <td>0.804</td>
  </tr>
  <tr>
    <td>RON</td>
    <td>0.931</td>
    <td>0.924</td>
    <td>0.985</td>
    <td>0.953</td>
  </tr>
  <tr>
    <td>RUS</td>
    <td>0.885</td>
    <td>0.818</td>
    <td>0.971</td>
    <td>0.888</td>
  </tr>
  <tr>
    <td>SPA</td>
    <td>0.888</td>
    <td>0.809</td>
    <td>0.990</td>
    <td>0.890</td>
  </tr>
  <tr>
    <td>TUR</td>
    <td>0.849</td>
    <td>0.735</td>
    <td>0.981</td>
    <td>0.840</td>
  </tr>
  <tr>
    <td>UKR</td>
    <td>0.768</td>
    <td>0.637</td>
    <td>0.987</td>
    <td>0.774</td>
  </tr>
  <tr>
    <td>VIE</td>
    <td>0.866</td>
    <td>0.757</td>
    <td>0.975</td>
    <td>0.853</td>
  </tr>
  <tr>
    <td>ZHO**</td>
    <td>0.803</td>
    <td>0.698</td>
    <td>0.970</td>
    <td>0.814</td>
  </tr>
</table>

## **Citation**
```
To Be Replaced to arxi preprint
@misc {1-800-shared-tasks_2024,
    authors       = { {Ram Mohan Rao Kadiyala, Siddartha Pullakhandam, Kanwal Mehreen, Ashay Srivastava, Subhasya TippaReddy, Arvind Reddy Bobbili, Drishti Sharma, Suraj Chandrashekhar, Modabbir Adeeb, Srinadh Vura } },
	title        = { MGTD-Checkpoints (v1) },
	year         = 2024,
	url          = { https://huggingface.co/1-800-SHARED-TASKS/MGTD-Checkpoints },
	doi          = { 10.57967/hf/3193 },
	publisher    = { Hugging Face }
}
```





## **Authors**

**Core Contributors**

- Ram Kadiyala [[contact@rkadiyala.com](mailto:contact@rkadiyala.com)]
- Siddartha Pullakhandam [[pullakh2@uwm.edu](mailto:pullakh2@uwm.edu)]
- Kanwal Mehreen [[kanwal@traversaal.ai](mailto:kanwal@traversaal.ai)]
- Ashay Srivastava [[ashays06@umd.edu](mailto:ashays06@umd.edu)]
- Subhasya TippaReddy [[subhasyat@usf.edu](mailto:subhasyat@usf.edu)]


**Extended Crew**
- Arvind Reddy Bobbili [[abobbili@cougarnet.uh.edu](mailto:abobbili@cougarnet.uh.edu)]
- Drishti Sharma [[drishtisharma96505@gmail.com](mailto:drishtisharma96505@gmail.com)]
- Suraj Chandrashekhar [[stelugar@umd.edu](mailto:stelugar@umd.edu)]
- Modabbir Adeeb [[madeeb@umd.edu](mailto:madeeb@umd.edu)]
- Srinadh Vura [[320106410055@andhrauniversity.edu.in](mailto:320106410055@andhrauniversity.edu.in)]


## **Contact**

 [![Gmail](https://img.shields.io/badge/Gmail-D14836?style=for-the-badge&logo=gmail&logoColor=white)](mailto:contact@rkadiyala.com)