File size: 6,560 Bytes
ce0c0a9 f2e0332 d56315c f2e0332 d56315c f2e0332 d56315c f2e0332 d56315c f2e0332 d56315c f2e0332 d56315c f2e0332 d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c 1425e7c d56315c d04a1c4 d56315c 1425e7c d56315c 1425e7c d56315c 1360af2 659778e 1360af2 5a0bbf6 91fb911 5a0bbf6 d56315c 91fb911 d56315c 6a3f427 d56315c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
---
license: cc-by-nc-4.0
language:
- ar
- cs
- de
- el
- en
- fr
- hi
- he
- it
- id
- ja
- ko
- nl
- fa
- pl
- pt
- ro
- ru
- es
- tr
- uk
- vi
- zh
---
# Model Checkpoints for Multilingual Machine-Generated Text Portion Detection
## Model Details
### Model Description
- Developed by: 1-800-SHARED-TASKS
- Funded by: Cohere's Research Compute Grant (July 2024)
- Model type: Transformer-based for multilingual text portion detection
- Languages (NLP): 23 languages (expanding to 102)
- License: Non-commercial; derivatives must remain non-commercial with proper attribution
### Model Sources
- **Code Repository:** [Github Placeholder]
- **Paper:** [ACL Anthology Placeholder]
- **Presentation:** [Multi-lingual Machine-Generated Text Portion(s) Detection](https://static1.squarespace.com/static/659ac5de66fdf20e1d607f2e/t/66d977a49597da76b6c260a1/1725527974250/MMGTD-Cohere.pdf)
## Uses
The dataset is suitable for machine-generated text portion detection, token classification tasks, and other linguistic tasks. The methods applied here aim to improve the accuracy of detecting which portions of text are machine-generated, particularly in multilingual contexts. The dataset could be beneficial for research and development in areas like AI-generated text moderation, natural language processing, and understanding the integration of AI in content generation.
## Training Details
The model was trained on a dataset consisting of approximately 330k text samples from LLMs Command-R-Plus (100k) and Aya-23-35B (230k). The dataset includes 10k samples per language for each LLM, with a distribution of 10% fully human-written texts, 10% entirely machine-generated texts, and 80% mixed cases.
## Evaluation
### Testing Data, Factors & Metrics
The model was evaluated on a multilingual dataset covering 23 languages. Metrics include Accuracy, Precision, Recall, and F1 Score at the word level (character level for Japanese and Chinese).
### Results
Here are the word-level metrics for each language and ** character-level metrics for Japanese (JPN) and Chinese (ZHO):
<table>
<tr>
<th>Language</th>
<th>Accuracy</th>
<th>Precision</th>
<th>Recall</th>
<th>F1 Score</th>
</tr>
<tr>
<td>ARA</td>
<td>0.923</td>
<td>0.832</td>
<td>0.992</td>
<td>0.905</td>
</tr>
<tr>
<td>CES</td>
<td>0.884</td>
<td>0.869</td>
<td>0.975</td>
<td>0.919</td>
</tr>
<tr>
<td>DEU</td>
<td>0.917</td>
<td>0.895</td>
<td>0.983</td>
<td>0.937</td>
</tr>
<tr>
<td>ELL</td>
<td>0.929</td>
<td>0.905</td>
<td>0.984</td>
<td>0.943</td>
</tr>
<tr>
<td>ENG</td>
<td>0.917</td>
<td>0.818</td>
<td>0.986</td>
<td>0.894</td>
</tr>
<tr>
<td>FRA</td>
<td>0.927</td>
<td>0.929</td>
<td>0.966</td>
<td>0.947</td>
</tr>
<tr>
<td>HEB</td>
<td>0.963</td>
<td>0.961</td>
<td>0.988</td>
<td>0.974</td>
</tr>
<tr>
<td>HIN</td>
<td>0.890</td>
<td>0.736</td>
<td>0.975</td>
<td>0.839</td>
</tr>
<tr>
<td>IND</td>
<td>0.861</td>
<td>0.794</td>
<td>0.988</td>
<td>0.881</td>
</tr>
<tr>
<td>ITA</td>
<td>0.941</td>
<td>0.906</td>
<td>0.989</td>
<td>0.946</td>
</tr>
<tr>
<td>JPN**</td>
<td>0.832</td>
<td>0.747</td>
<td>0.965</td>
<td>0.842</td>
</tr>
<tr>
<td>KOR</td>
<td>0.937</td>
<td>0.918</td>
<td>0.992</td>
<td>0.954</td>
</tr>
<tr>
<td>NLD</td>
<td>0.916</td>
<td>0.872</td>
<td>0.985</td>
<td>0.925</td>
</tr>
<tr>
<td>PES</td>
<td>0.822</td>
<td>0.668</td>
<td>0.972</td>
<td>0.792</td>
</tr>
<tr>
<td>POL</td>
<td>0.903</td>
<td>0.884</td>
<td>0.986</td>
<td>0.932</td>
</tr>
<tr>
<td>POR</td>
<td>0.805</td>
<td>0.679</td>
<td>0.987</td>
<td>0.804</td>
</tr>
<tr>
<td>RON</td>
<td>0.931</td>
<td>0.924</td>
<td>0.985</td>
<td>0.953</td>
</tr>
<tr>
<td>RUS</td>
<td>0.885</td>
<td>0.818</td>
<td>0.971</td>
<td>0.888</td>
</tr>
<tr>
<td>SPA</td>
<td>0.888</td>
<td>0.809</td>
<td>0.990</td>
<td>0.890</td>
</tr>
<tr>
<td>TUR</td>
<td>0.849</td>
<td>0.735</td>
<td>0.981</td>
<td>0.840</td>
</tr>
<tr>
<td>UKR</td>
<td>0.768</td>
<td>0.637</td>
<td>0.987</td>
<td>0.774</td>
</tr>
<tr>
<td>VIE</td>
<td>0.866</td>
<td>0.757</td>
<td>0.975</td>
<td>0.853</td>
</tr>
<tr>
<td>ZHO**</td>
<td>0.803</td>
<td>0.698</td>
<td>0.970</td>
<td>0.814</td>
</tr>
</table>
### **Results on unseen generators and domains**
- M4GT-Bench (includes partial cases) - 89.38% word level accuracy [ unseen generators, seen domains ]
- ETS Essays (only binary cases) - 99.21% overall accuracy [ unseen generators, unseen domains]
- RAID-Bench (binary cases with adversarial inputs) - TBA overall accuracy [ unseen generators, unseen domains ]
## **Citation**
```
To Be Replaced to arxi preprint
@misc {1-800-shared-tasks_2024,
authors = { {Ram Mohan Rao Kadiyala, Siddartha Pullakhandam, Kanwal Mehreen, Ashay Srivastava, Subhasya TippaReddy, Arvind Reddy Bobbili, Drishti Sharma, Suraj Chandrashekhar, Modabbir Adeeb, Srinadh Vura } },
title = { MGTD-Checkpoints (v1) },
year = 2024,
url = { https://huggingface.co/1-800-SHARED-TASKS/MGTD-Checkpoints },
doi = { 10.57967/hf/3193 },
publisher = { Hugging Face }
}
```
## **Authors**
**Core Contributors**
- Ram Kadiyala [[contact@rkadiyala.com](mailto:contact@rkadiyala.com)]
- Siddartha Pullakhandam [[pullakh2@uwm.edu](mailto:pullakh2@uwm.edu)]
- Kanwal Mehreen [[kanwal@traversaal.ai](mailto:kanwal@traversaal.ai)]
- Ashay Srivastava [[ashays06@umd.edu](mailto:ashays06@umd.edu)]
- Subhasya TippaReddy [[subhasyat@usf.edu](mailto:subhasyat@usf.edu)]
**Extended Crew**
- Arvind Reddy Bobbili [[abobbili@cougarnet.uh.edu](mailto:abobbili@cougarnet.uh.edu)]
- Drishti Sharma [[drishtisharma96505@gmail.com](mailto:drishtisharma96505@gmail.com)]
- Suraj Chandrashekhar [[stelugar@umd.edu](mailto:stelugar@umd.edu)]
- Modabbir Adeeb [[madeeb@umd.edu](mailto:madeeb@umd.edu)]
- Srinadh Vura [[320106410055@andhrauniversity.edu.in](mailto:320106410055@andhrauniversity.edu.in)]
## **Contact**
[![Gmail](https://img.shields.io/badge/Gmail-D14836?style=for-the-badge&logo=gmail&logoColor=white)](mailto:contact@rkadiyala.com) |