--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.9761 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.8304 | 1.0 | 113 | 1.8548 | 0.5 | | 1.3511 | 2.0 | 226 | 1.4176 | 0.62 | | 1.1663 | 3.0 | 339 | 1.1749 | 0.76 | | 0.9766 | 4.0 | 452 | 1.1462 | 0.76 | | 0.7991 | 5.0 | 565 | 1.0334 | 0.77 | | 0.6797 | 6.0 | 678 | 0.9604 | 0.83 | | 0.5928 | 7.0 | 791 | 1.0394 | 0.79 | | 0.6555 | 8.0 | 904 | 0.9627 | 0.79 | | 0.5829 | 9.0 | 1017 | 0.9741 | 0.81 | | 0.6485 | 10.0 | 1130 | 0.9761 | 0.81 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3