File size: 2,828 Bytes
dbe2dd5 5576f54 dbe2dd5 5576f54 4ba9e83 5576f54 86c7f6c 5576f54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
library_name: peft
base_model: owkin/phikon
tags:
- feature-extraction
- image-classification
- biology
- cancer
- owkin
- histology
model-index:
- name: owkin_pancancer
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: 1aurent/Kather-texture-2016
type: image-classification
metrics:
- type: accuracy
value: 0.99
name: accuracy
verified: false
license: other
license_name: owkin-non-commercial
license_link: https://github.com/owkin/HistoSSLscaling/blob/main/LICENSE.txt
pipeline_tag: image-classification
datasets:
- 1aurent/Kather-texture-2016
metrics:
- accuracy
widget:
- src: https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg
example_title: adipose
---
# Model card for phikon-finetuned-lora-kather2016
This model is a fine-tuned version of [owkin/phikon](https://huggingface.co/owkin/phikon) on the [1aurent/Kather-texture-2016](https://huggingface.co/datasets/1aurent/Kather-texture-2016) dataset.
## Model Usage
### Image Classification
```python
from transformers import AutoModelForImageClassification, AutoImageProcessor
from peft import PeftConfig, PeftModel
from urllib.request import urlopen
from PIL import Image
# get example histology image
img = Image.open(
urlopen(
"https://datasets-server.huggingface.co/assets/1aurent/Kather-texture-2016/--/default/train/0/image/image.jpg"
)
)
# load config, image_processor, base_model and lora_model from the hub
model_name = "1aurent/phikon-finetuned-lora-kather2016"
config = PeftConfig.from_pretrained(
pretrained_model_name_or_path=model_name
)
image_processor = AutoImageProcessor.from_pretrained(
pretrained_model_name_or_path=config.base_model_name_or_path
)
model = AutoModelForImageClassification.from_pretrained(
pretrained_model_name_or_path=config.base_model_name_or_path,
num_labels=8,
)
lora_model = PeftModel.from_pretrained(
model=model,
model_id=model_name
)
inputs = image_processor(img, return_tensors="pt")
outputs = lora_model(**inputs)
```
## Citation
```bibtex
@article{Filiot2023.07.21.23292757,
author = {Alexandre Filiot and Ridouane Ghermi and Antoine Olivier and Paul Jacob and Lucas Fidon and Alice Mac Kain and Charlie Saillard and Jean-Baptiste Schiratti},
title = {Scaling Self-Supervised Learning for Histopathology with Masked Image Modeling},
elocation-id = {2023.07.21.23292757},
year = {2023},
doi = {10.1101/2023.07.21.23292757},
publisher = {Cold Spring Harbor Laboratory Press},
url = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757},
eprint = {https://www.medrxiv.org/content/early/2023/09/14/2023.07.21.23292757.full.pdf},
journal = {medRxiv}
}
``` |