Update README.md
Browse files
README.md
CHANGED
@@ -1,8 +1,151 @@
|
|
1 |
---
|
2 |
tags:
|
3 |
-
- image-classification
|
4 |
- timm
|
|
|
|
|
5 |
library_name: timm
|
6 |
-
license:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
|
|
8 |
# Model card for vit_large_patch14_reg4_dinov2.kaiko_ai_towards_large_pathology_fms
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
tags:
|
|
|
3 |
- timm
|
4 |
+
- feature-extraction
|
5 |
+
- image-classification
|
6 |
library_name: timm
|
7 |
+
license: other
|
8 |
+
license_name: kaiko-non-commercial
|
9 |
+
license_link: https://github.com/kaiko-ai/towards_large_pathology_fms/blob/a62a0c54719d858371aefa0fcab6ec4b34c86c4c/LICENSE
|
10 |
+
metrics:
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: kaiko
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
type: image-classification
|
17 |
+
name: Image Classification
|
18 |
+
dataset:
|
19 |
+
name: BACH
|
20 |
+
type: image-classification
|
21 |
+
metrics:
|
22 |
+
- type: accuracy
|
23 |
+
value: 0.870
|
24 |
+
name: Accuracy
|
25 |
+
verified: false
|
26 |
+
- task:
|
27 |
+
type: image-classification
|
28 |
+
name: Image Classification
|
29 |
+
dataset:
|
30 |
+
name: CRC-NCT-HE
|
31 |
+
type: image-classification
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 0.930
|
35 |
+
name: Accuracy
|
36 |
+
verified: false
|
37 |
+
- task:
|
38 |
+
type: image-classification
|
39 |
+
name: Image Classification
|
40 |
+
dataset:
|
41 |
+
name: MHIST
|
42 |
+
type: image-classification
|
43 |
+
metrics:
|
44 |
+
- type: accuracy
|
45 |
+
value: 0.809
|
46 |
+
name: Accuracy
|
47 |
+
verified: false
|
48 |
+
- task:
|
49 |
+
type: image-classification
|
50 |
+
name: Image Classification
|
51 |
+
dataset:
|
52 |
+
name: PCam
|
53 |
+
type: image-classification
|
54 |
+
metrics:
|
55 |
+
- type: accuracy
|
56 |
+
value: 0.898
|
57 |
+
name: Accuracy
|
58 |
+
verified: false
|
59 |
+
- task:
|
60 |
+
type: image-classification
|
61 |
+
name: Image Classification
|
62 |
+
dataset:
|
63 |
+
name: TP53
|
64 |
+
type: image-classification
|
65 |
+
metrics:
|
66 |
+
- type: accuracy
|
67 |
+
value: 0.656
|
68 |
+
name: Accuracy
|
69 |
+
verified: false
|
70 |
+
- task:
|
71 |
+
type: image-classification
|
72 |
+
name: Image Classification
|
73 |
+
dataset:
|
74 |
+
name: CoNSeP
|
75 |
+
type: image-classification
|
76 |
+
metrics:
|
77 |
+
- type: accuracy
|
78 |
+
value: 0.679
|
79 |
+
name: Accuracy
|
80 |
+
verified: false
|
81 |
---
|
82 |
+
|
83 |
# Model card for vit_large_patch14_reg4_dinov2.kaiko_ai_towards_large_pathology_fms
|
84 |
+
|
85 |
+
![](https://github.com/kaiko-ai/towards_large_pathology_fms/blob/a62a0c54719d858371aefa0fcab6ec4b34c86c4c/docs/images/kaiko-logo.png?raw=true)
|
86 |
+
|
87 |
+
## Model Details
|
88 |
+
|
89 |
+
- **Model Type:** Feature backbone
|
90 |
+
- **Model Stats:**
|
91 |
+
- Params: 304M (large)
|
92 |
+
- Image size: 224 x 224 x 3
|
93 |
+
- Patch size: 14 x 14 x 3
|
94 |
+
- **Repository:** [github.com:kaiko-ai/towards_large_pathology_fms](https://github.com/kaiko-ai/towards_large_pathology_fms)
|
95 |
+
- **Original Weights:** [github.com:kaiko-ai/towards_large_pathology_fms/0.0.1](https://github.com/kaiko-ai/towards_large_pathology_fms/releases/tag/0.0.1)
|
96 |
+
- **Papers:**
|
97 |
+
- [Towards Large-Scale Training of Pathology Foundation Models](https://arxiv.org/abs/2404.15217)
|
98 |
+
|
99 |
+
## Model Usage
|
100 |
+
|
101 |
+
### Image Embeddings
|
102 |
+
|
103 |
+
```python
|
104 |
+
from torchvision.transforms import v2
|
105 |
+
from PIL import Image
|
106 |
+
import requests
|
107 |
+
import torch
|
108 |
+
import timm
|
109 |
+
import io
|
110 |
+
|
111 |
+
# get example histology image
|
112 |
+
url = "https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQc7_xZpGOfQT7sxKwf2w5lL4GAq6IX_CbTzP1NGeenzA&s"
|
113 |
+
image = Image.open(io.BytesIO(requests.get(url).content))
|
114 |
+
|
115 |
+
# load model from the hub
|
116 |
+
model = timm.create_model(
|
117 |
+
model_name="hf-hub:1aurent/vit_large_patch14_reg4_dinov2.kaiko_ai_towards_large_pathology_fms",
|
118 |
+
dynamic_img_size=True,
|
119 |
+
pretrained=True,
|
120 |
+
).eval()
|
121 |
+
|
122 |
+
# get image transform
|
123 |
+
preprocessing = v2.Compose(
|
124 |
+
[
|
125 |
+
v2.ToImage(),
|
126 |
+
v2.Resize(size=224),
|
127 |
+
v2.CenterCrop(size=224),
|
128 |
+
v2.ToDtype(torch.float32, scale=True),
|
129 |
+
v2.Normalize(
|
130 |
+
mean=(0.5, 0.5, 0.5),
|
131 |
+
std=(0.5, 0.5, 0.5),
|
132 |
+
),
|
133 |
+
]
|
134 |
+
)
|
135 |
+
|
136 |
+
data = preprocessing(image).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor
|
137 |
+
output = model(data) # output is a (batch_size, num_features) shaped tensor
|
138 |
+
```
|
139 |
+
|
140 |
+
## Citation
|
141 |
+
|
142 |
+
```bibtex
|
143 |
+
@misc{ai2024largescale,
|
144 |
+
title = {Towards Large-Scale Training of Pathology Foundation Models},
|
145 |
+
author = {kaiko.ai and Nanne Aben and Edwin D. de Jong and Ioannis Gatopoulos and Nicolas Känzig and Mikhail Karasikov and Axel Lagré and Roman Moser and Joost van Doorn and Fei Tang},
|
146 |
+
year = {2024},
|
147 |
+
eprint = {2404.15217},
|
148 |
+
archivePrefix = {arXiv},
|
149 |
+
primaryClass = {cs.CV}
|
150 |
+
}
|
151 |
+
```
|