{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000017FF124EC10>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000017FF1251200>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 300000, "_total_timesteps": 300000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690372760955540600, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVdQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMQ0M6XFB5dGhvbjMuOS4xM1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAMGGjPrMtX7y49Pg+MGGjPrMtX7y49Pg+MGGjPrMtX7y49Pg+MGGjPrMtX7y49Pg+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAlye9v/PQGj6yLmu/rMwyP+C+Jj8XPcu/ThZvP7Nf3b/rYwy9OXWQP46Xhb+gbrQ/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAwYaM+sy1fvLj0+D67v6a8ijS1uXo/WbswYaM+sy1fvLj0+D67v6a8ijS1uXo/WbswYaM+sy1fvLj0+D67v6a8ijS1uXo/WbswYaM+sy1fvLj0+D67v6a8ijS1uXo/WbuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.31910086 -0.01362174  0.48624206]\n [ 0.31910086 -0.01362174  0.48624206]\n [ 0.31910086 -0.01362174  0.48624206]\n [ 0.31910086 -0.01362174  0.48624206]]", "desired_goal": "[[-1.4777707   0.1511877  -0.91868126]\n [ 0.69843554  0.65135    -1.5878018 ]\n [ 0.9339341  -1.729483   -0.03427498]\n [ 1.1285774  -1.0436876   1.409626  ]]", "observation": "[[ 3.1910086e-01 -1.3621735e-02  4.8624206e-01 -2.0355096e-02\n  -3.4562155e-04 -3.3149407e-03]\n [ 3.1910086e-01 -1.3621735e-02  4.8624206e-01 -2.0355096e-02\n  -3.4562155e-04 -3.3149407e-03]\n [ 3.1910086e-01 -1.3621735e-02  4.8624206e-01 -2.0355096e-02\n  -3.4562155e-04 -3.3149407e-03]\n [ 3.1910086e-01 -1.3621735e-02  4.8624206e-01 -2.0355096e-02\n  -3.4562155e-04 -3.3149407e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAVdoJPiaXhj2lDG0+C3WpPQubpD2fm0Y+dnt+PfG2gb2s4ao81UOpO8DvSD0hlXg9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[ 0.13462193  0.06571798  0.23149355]\n [ 0.08274277  0.08037385  0.19395302]\n [ 0.06212946 -0.06333721  0.02085956]\n [ 0.00516556  0.04905677  0.0606891 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI63O1FftL4r+UhpRSlIwBbJRLMowBdJRHQIMXvoTwlSl1fZQoaAZoCWgPQwhhpu1fWenjv5SGlFKUaBVLMmgWR0CDFuHxBmf5dX2UKGgGaAloD0MInE1HADeL5L+UhpRSlGgVSzJoFkdAgxYM8YAKfHV9lChoBmgJaA9DCEa0HVN35eK/lIaUUpRoFUsyaBZHQIMVPhhpg1F1fZQoaAZoCWgPQwiMg0vHnGfdv5SGlFKUaBVLMmgWR0CDG4EVWS2ZdX2UKGgGaAloD0MIGcv0S8Sb9r+UhpRSlGgVSzJoFkdAgxqkgGKQ73V9lChoBmgJaA9DCMzuycNCLfO/lIaUUpRoFUsyaBZHQIMZ0Y0l7dB1fZQoaAZoCWgPQwhg5jv4iQPhv5SGlFKUaBVLMmgWR0CDGQK0D2aldX2UKGgGaAloD0MIho+IKZFE57+UhpRSlGgVSzJoFkdAgx8A8KXv6XV9lChoBmgJaA9DCMAEbt3N0+K/lIaUUpRoFUsyaBZHQIMeIk/r0J51fZQoaAZoCWgPQwiXjGMkewTmv5SGlFKUaBVLMmgWR0CDHU9cry2AdX2UKGgGaAloD0MIRfXWwFYJ57+UhpRSlGgVSzJoFkdAgxx+d07r9nV9lChoBmgJaA9DCKkWEcXkjfq/lIaUUpRoFUsyaBZHQIMibXvphWp1fZQoaAZoCWgPQwgkZCDPLt/dv5SGlFKUaBVLMmgWR0CDIY7bL2YfdX2UKGgGaAloD0MI/rYnSGz34b+UhpRSlGgVSzJoFkdAgyC526kIonV9lChoBmgJaA9DCAFRMGMK1vi/lIaUUpRoFUsyaBZHQIMf6wKSgXd1fZQoaAZoCWgPQwjO+pRjsrjvv5SGlFKUaBVLMmgWR0CDJeI4VARkdX2UKGgGaAloD0MIZY16iEb35L+UhpRSlGgVSzJoFkdAgyUDmCAc1nV9lChoBmgJaA9DCKVmD7QCw+y/lIaUUpRoFUsyaBZHQIMkLpgTh5x1fZQoaAZoCWgPQwjDSC9q96vov5SGlFKUaBVLMmgWR0CDI1++/QBxdX2UKGgGaAloD0MIq+gPzTy567+UhpRSlGgVSzJoFkdAgyme1rqMWHV9lChoBmgJaA9DCKQa9ntinee/lIaUUpRoFUsyaBZHQIMowDaGpMp1fZQoaAZoCWgPQwhCI9i4/p3wv5SGlFKUaBVLMmgWR0CDJ+1Cw8nvdX2UKGgGaAloD0MIE9cxrrg43b+UhpRSlGgVSzJoFkdAgyceajN6gXV9lChoBmgJaA9DCG0ANiBC3OC/lIaUUpRoFUsyaBZHQIMtIevIOpd1fZQoaAZoCWgPQwiKO97kt+jiv5SGlFKUaBVLMmgWR0CDLEVXV9WqdX2UKGgGaAloD0MIYthhTPp73b+UhpRSlGgVSzJoFkdAgytwV9F4LXV9lChoBmgJaA9DCAGHUKVmD9i/lIaUUpRoFUsyaBZHQIMqoX668QJ1fZQoaAZoCWgPQwhYHqSnyCHkv5SGlFKUaBVLMmgWR0CDMJi1AqusdX2UKGgGaAloD0MITRQhdTt76r+UhpRSlGgVSzJoFkdAgy+8IJJGv3V9lChoBmgJaA9DCJVFYRdFD+S/lIaUUpRoFUsyaBZHQIMu5yEL6UJ1fZQoaAZoCWgPQwheEmdF1ETfv5SGlFKUaBVLMmgWR0CDLhhH9WIXdX2UKGgGaAloD0MIv9GOG34347+UhpRSlGgVSzJoFkdAgzQTs6aLGnV9lChoBmgJaA9DCEoJwap6eey/lIaUUpRoFUsyaBZHQIMzNRHf/FR1fZQoaAZoCWgPQwiSsdr8v+rnv5SGlFKUaBVLMmgWR0CDMmIi1RcedX2UKGgGaAloD0MI+dnIdVNK7L+UhpRSlGgVSzJoFkdAgzGROLzf8HV9lChoBmgJaA9DCI7nM6DejNu/lIaUUpRoFUsyaBZHQIM3nM2WIGh1fZQoaAZoCWgPQwjEsS5uowHwv5SGlFKUaBVLMmgWR0CDNsA6Mir1dX2UKGgGaAloD0MIknnkDwYe6b+UhpRSlGgVSzJoFkdAgzXtRm9QGnV9lChoBmgJaA9DCD/9Z82PP+G/lIaUUpRoFUsyaBZHQIM1HGCI1tR1fZQoaAZoCWgPQwi6S+KsiBrgv5SGlFKUaBVLMmgWR0CDOx3UQTVUdX2UKGgGaAloD0MIYW9iSE4m57+UhpRSlGgVSzJoFkdAgzo/M4cWCXV9lChoBmgJaA9DCLPviuB/q+2/lIaUUpRoFUsyaBZHQIM5bEBKcut1fZQoaAZoCWgPQwjQ8GYN3lfav5SGlFKUaBVLMmgWR0CDOJta6jFidX2UKGgGaAloD0MI6UXtfhXg7L+UhpRSlGgVSzJoFkdAgz6i8vmHQHV9lChoBmgJaA9DCG9iSE4mbt2/lIaUUpRoFUsyaBZHQIM9xl8PWhB1fZQoaAZoCWgPQwgqyM9Grhviv5SGlFKUaBVLMmgWR0CDPPFfAsTWdX2UKGgGaAloD0MI3lhQGJRp5b+UhpRSlGgVSzJoFkdAgzwihew9q3V9lChoBmgJaA9DCNBf6BGj59y/lIaUUpRoFUsyaBZHQINCLCrLhaV1fZQoaAZoCWgPQwg2V81zRD7mv5SGlFKUaBVLMmgWR0CDQU2KEWZadX2UKGgGaAloD0MIgSVXsfjN47+UhpRSlGgVSzJoFkdAg0B6ltTDO3V9lChoBmgJaA9DCJPJqZ1haui/lIaUUpRoFUsyaBZHQIM/qbF0gbJ1fZQoaAZoCWgPQwhTl4xjJHvhv5SGlFKUaBVLMmgWR0CDRa89wFTvdX2UKGgGaAloD0MIFto5zQJt5b+UhpRSlGgVSzJoFkdAg0TSqU/wAnV9lChoBmgJaA9DCOS7lLpkHNy/lIaUUpRoFUsyaBZHQIND/7WNFSd1fZQoaAZoCWgPQwjICKhwBCniv5SGlFKUaBVLMmgWR0CDQy7QLNOedX2UKGgGaAloD0MIt7QaEvfY6r+UhpRSlGgVSzJoFkdAg0kuNYKYzHV9lChoBmgJaA9DCKzI6IAk7Nu/lIaUUpRoFUsyaBZHQINIT5TIeYF1fZQoaAZoCWgPQwjBGmfTEcDrv5SGlFKUaBVLMmgWR0CDR3yhBZ6ldX2UKGgGaAloD0MIUyXK3lLO57+UhpRSlGgVSzJoFkdAg0aru6VdHHV9lChoBmgJaA9DCKDFUiRfieG/lIaUUpRoFUsyaBZHQINMqTY/Vy51fZQoaAZoCWgPQwiOIJViR+Pov5SGlFKUaBVLMmgWR0CDS8qWkadddX2UKGgGaAloD0MIK27cYn5u3r+UhpRSlGgVSzJoFkdAg0r3nQpnYnV9lChoBmgJaA9DCAOYMnBAS+S/lIaUUpRoFUsyaBZHQINKJrYXfqJ1fZQoaAZoCWgPQwiMTMCvkSThv5SGlFKUaBVLMmgWR0CDUB/FR51OdX2UKGgGaAloD0MIAiuHFtnO4L+UhpRSlGgVSzJoFkdAg09BJI1+AnV9lChoBmgJaA9DCLBXWHA/YOS/lIaUUpRoFUsyaBZHQINObjFQ2uR1fZQoaAZoCWgPQwiHqMKf4U3hv5SGlFKUaBVLMmgWR0CDTZ1LamGedX2UKGgGaAloD0MI5l31gHnI67+UhpRSlGgVSzJoFkdAg1OUgbIcR3V9lChoBmgJaA9DCB9KtOTxtOW/lIaUUpRoFUsyaBZHQINSt+1Bt1p1fZQoaAZoCWgPQwgwTKYKRiXfv5SGlFKUaBVLMmgWR0CDUeLtu1nedX2UKGgGaAloD0MIwcWKGkzD3r+UhpRSlGgVSzJoFkdAg1ESCFsYVXV9lChoBmgJaA9DCCvfMxKhEea/lIaUUpRoFUsyaBZHQINXCT6i0v51fZQoaAZoCWgPQwjvkc1V8xzmv5SGlFKUaBVLMmgWR0CDViqd6LOzdX2UKGgGaAloD0MIlltaDYn76L+UhpRSlGgVSzJoFkdAg1VXqiXY2HV9lChoBmgJaA9DCP89eO3Shum/lIaUUpRoFUsyaBZHQINUhsTFl051fZQoaAZoCWgPQwhQVaGBWDbXv5SGlFKUaBVLMmgWR0CDWoN5MURGdX2UKGgGaAloD0MIjspN1NLc37+UhpRSlGgVSzJoFkdAg1mk2P1cuHV9lChoBmgJaA9DCDvhJTj1AeS/lIaUUpRoFUsyaBZHQINY0eU6gdx1fZQoaAZoCWgPQwiwyoXKv5bev5SGlFKUaBVLMmgWR0CDWAD/2kBTdX2UKGgGaAloD0MIgZICC2DK47+UhpRSlGgVSzJoFkdAg132KVII4XV9lChoBmgJaA9DCN44Kcx7nO+/lIaUUpRoFUsyaBZHQINdF4keIVN1fZQoaAZoCWgPQwgv3SQGgZXrv5SGlFKUaBVLMmgWR0CDXEKJl8PXdX2UKGgGaAloD0MIkl7U7leB5r+UhpRSlGgVSzJoFkdAg1tzsIE8rHV9lChoBmgJaA9DCEhrDDohdOS/lIaUUpRoFUsyaBZHQINhcxdpqRF1fZQoaAZoCWgPQwhnZfuQt1zXv5SGlFKUaBVLMmgWR0CDYJR2r4nGdX2UKGgGaAloD0MI9yAE5Eso6L+UhpRSlGgVSzJoFkdAg1/Bg/keZHV9lChoBmgJaA9DCCz0wTI2dNy/lIaUUpRoFUsyaBZHQINe8J4SpR51fZQoaAZoCWgPQwi8H7dfPtnkv5SGlFKUaBVLMmgWR0CDZOwGGEf1dX2UKGgGaAloD0MIMpBnl2995L+UhpRSlGgVSzJoFkdAg2QPc8DB/XV9lChoBmgJaA9DCHTPukbLgeO/lIaUUpRoFUsyaBZHQINjOnCO3lV1fZQoaAZoCWgPQwh0llmEYqvjv5SGlFKUaBVLMmgWR0CDYmuanaWYdX2UKGgGaAloD0MIcw8J3/sb6r+UhpRSlGgVSzJoFkdAg2hWa+evp3V9lChoBmgJaA9DCBU6r7FLVOW/lIaUUpRoFUsyaBZHQINnedd3Srp1fZQoaAZoCWgPQwhcx7ji4qjYv5SGlFKUaBVLMmgWR0CDZqTX8O0+dX2UKGgGaAloD0MIbsST3czo47+UhpRSlGgVSzJoFkdAg2XT8pCrtHV9lChoBmgJaA9DCGVvKeeLPeC/lIaUUpRoFUsyaBZHQINrxw++ueV1fZQoaAZoCWgPQwg17WKa6V7iv5SGlFKUaBVLMmgWR0CDaup71Iy1dX2UKGgGaAloD0MI61bPSe8b3b+UhpRSlGgVSzJoFkdAg2oVe8f3e3V9lChoBmgJaA9DCK5i8ZvCStu/lIaUUpRoFUsyaBZHQINpRJbt7a91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 15000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.13", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}