223b
/

Safetensors
223b commited on
Commit
b3bde79
1 Parent(s): 9166800

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -16
README.md CHANGED
@@ -1,22 +1,59 @@
1
  ---
2
  base_model: llm-jp/llm-jp-3-13b
3
- tags:
4
- - text-generation-inference
5
- - transformers
6
- - unsloth
7
- - llama
8
- - trl
9
- license: apache-2.0
10
- language:
11
- - en
12
- ---
13
 
14
- # Uploaded model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- - **Developed by:** 223b
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** llm-jp/llm-jp-3-13b
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
1
  ---
2
  base_model: llm-jp/llm-jp-3-13b
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Inference
5
+ ```python
6
+ from unsloth import FastLanguageModel
7
+ from peft import PeftModel
8
+ import torch
9
+ import json
10
+ from tqdm import tqdm
11
+ import re
12
+
13
+ model_id = "llm-jp/llm-jp-3-13b"
14
+ adapter_id = ""
15
+ HF_TOKEN = "" # use your token
16
+
17
+ dtype = None
18
+ load_in_4bit = True # 今回は13Bモデルを扱うためTrue
19
+
20
+ model, tokenizer = FastLanguageModel.from_pretrained(
21
+ model_name=model_id,
22
+ dtype=dtype,
23
+ load_in_4bit=load_in_4bit,
24
+ trust_remote_code=True,
25
+ )
26
+
27
+ model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)
28
+
29
+ datasets = []
30
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
31
+ item = ""
32
+ for line in f:
33
+ line = line.strip()
34
+ item += line
35
+ if item.endswith("}"):
36
+ datasets.append(json.loads(item))
37
+ item = ""
38
+
39
+ FastLanguageModel.for_inference(model)
40
+
41
+ results = []
42
+ for dt in tqdm(datasets):
43
+ input = dt["input"]
44
+
45
+ prompt = f"""### 指示\n{input}\n### 回答\n"""
46
+
47
+ inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
48
 
49
+ outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
50
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
 
51
 
52
+ results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
53
 
54
+ json_file_id = re.sub(".*/", "", adapter_id)
55
+ with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
56
+ for result in results:
57
+ json.dump(result, f, ensure_ascii=False)
58
+ f.write('\n')
59
+ ```