--- license: llama2 language: - ko pipeline_tag: text-generation tags: - ' llama' - facebook - ' meta' - llama-2 - kollama - llama-2-ko - text-generation-inference --- # 💻MAC os Compatible💻 # Llama 2 ko 7B - GGUF - Model creator: [Meta](https://huggingface.co/meta-llama) - Original model: [Llama 2 7B](https://huggingface.co/meta-llama/Llama-2-7b-hf) - Original Llama-2-Ko model: [Llama 2 ko 7B](https://huggingface.co/beomi/llama-2-ko-7b) - Reference: [Llama 2 7B GGUF](https://huggingface.co/TheBloke/Llama-2-7B-GGUF) ## Download ```shell pip3 install huggingface-hub>=0.17.1 ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download 24bean/Llama-2-ko-7B-GGUF llama-2-ko-7b_q8_0.gguf --local-dir . --local-dir-use-symlinks False ``` Or you can download llama-2-ko-7b.gguf, non-quantized model by ```shell huggingface-cli download 24bean/Llama-2-ko-7B-GGUF llama-2-ko-7b.gguf --local-dir . --local-dir-use-symlinks False ``` ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m llama-2-ko-7b_q8_0.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}" ``` # How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ## How to load this model from Python using ctransformers ### First install the package ```bash # Base ctransformers with no GPU acceleration pip install ctransformers>=0.2.24 # Or with CUDA GPU acceleration pip install ctransformers[cuda]>=0.2.24 # Or with ROCm GPU acceleration CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers ``` ### Simple example code to load one of these GGUF models ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("24bean/Llama-2-ko-7B-GGUF", model_file="llama-2-7b_q8_0.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here's guides on using llama-cpp-python or ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)