24bean commited on
Commit
491f9e5
·
1 Parent(s): 976245b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - emotion
7
+ metrics:
8
+ - accuracy
9
+ - f1
10
+ model-index:
11
+ - name: xlm-roberta-base-finetuned-emotion
12
+ results:
13
+ - task:
14
+ name: Text Classification
15
+ type: text-classification
16
+ dataset:
17
+ name: emotion
18
+ type: emotion
19
+ config: split
20
+ split: validation
21
+ args: split
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.93
26
+ - name: F1
27
+ type: f1
28
+ value: 0.9305878715788028
29
+ ---
30
+
31
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
32
+ should probably proofread and complete it, then remove this comment. -->
33
+
34
+ # xlm-roberta-base-finetuned-emotion
35
+
36
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the emotion dataset.
37
+ It achieves the following results on the evaluation set:
38
+ - Loss: 0.1597
39
+ - Accuracy: 0.93
40
+ - F1: 0.9306
41
+
42
+ ## Model description
43
+
44
+ More information needed
45
+
46
+ ## Intended uses & limitations
47
+
48
+ More information needed
49
+
50
+ ## Training and evaluation data
51
+
52
+ More information needed
53
+
54
+ ## Training procedure
55
+
56
+ ### Training hyperparameters
57
+
58
+ The following hyperparameters were used during training:
59
+ - learning_rate: 2e-05
60
+ - train_batch_size: 64
61
+ - eval_batch_size: 64
62
+ - seed: 42
63
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
64
+ - lr_scheduler_type: linear
65
+ - num_epochs: 5
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
71
+ | 1.2299 | 1.0 | 250 | 0.6646 | 0.7735 | 0.7537 |
72
+ | 0.4722 | 2.0 | 500 | 0.2553 | 0.9105 | 0.9112 |
73
+ | 0.2207 | 3.0 | 750 | 0.1990 | 0.9215 | 0.9221 |
74
+ | 0.1559 | 4.0 | 1000 | 0.1537 | 0.931 | 0.9312 |
75
+ | 0.129 | 5.0 | 1250 | 0.1597 | 0.93 | 0.9306 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.29.1
81
+ - Pytorch 2.0.0+cu118
82
+ - Datasets 2.12.0
83
+ - Tokenizers 0.13.3