--- license: mit tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.93 - name: F1 type: f1 value: 0.9305878715788028 --- # xlm-roberta-base-finetuned-emotion This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1597 - Accuracy: 0.93 - F1: 0.9306 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2299 | 1.0 | 250 | 0.6646 | 0.7735 | 0.7537 | | 0.4722 | 2.0 | 500 | 0.2553 | 0.9105 | 0.9112 | | 0.2207 | 3.0 | 750 | 0.1990 | 0.9215 | 0.9221 | | 0.1559 | 4.0 | 1000 | 0.1537 | 0.931 | 0.9312 | | 0.129 | 5.0 | 1250 | 0.1597 | 0.93 | 0.9306 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3