Initial commit
Browse files- A2C-AntBulletEnv-v0.zip +3 -0
- A2C-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- A2C-AntBulletEnv-v0/data +105 -0
- A2C-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- A2C-AntBulletEnv-v0/policy.pth +3 -0
- A2C-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- A2C-AntBulletEnv-v0/system_info.txt +7 -0
- README.md +36 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
A2C-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2230e5a0e87351f4ac6fb051d9cc80f677b6f5367be6ab33a8bbff939a6da43c
|
3 |
+
size 129193
|
A2C-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.0
|
A2C-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b18b87d40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b18b87dd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b18b87e60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b18b87ef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f8b18b87f80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f8b18b8e050>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b18b8e0e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f8b18b8e170>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b18b8e200>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b18b8e290>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b18b8e320>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f8b18bdc570>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1661949176.2824688,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA8FErvnC3oz7r9xw/X2xcP9oi0j2acnK+Ku/tPjVCp75PSfi/otrsvzaEFL5xxs0/UMe7PztUCL8pung+FQdJP6FDKz9tKw8/+6QEP08jub+d784/KK4tPeJjNz4qoMM+a44qwBHDtj4PpMk+t+EKPwDeZT5UtmS/uAIMvF4hSUCVkh3AkNpQwDkFMz9UITo+24RrP/KrjD2HIOY+aVJQPVp+CD8s7NY/fotCvy2lQ8DrgBq/nqGFvwf99j0z90+98VzNP3ZsvTsCEDu/riCZPswfwD4Rw7Y+D6TJPhrx67+TK9G+maTRPnCrID8jJi6/A4wEP1fVI75ObpE/ey4mPxFWDsAExsY+5fuAvimsLbyqd70/MIQbvRghOb88Pjc9tw4UP1EO5z4MQDo/jUZ4vvrDyj+pi1A+T6A3v5v9yL3MH8A+EcO2Pg+kyT634Qo/SdQUQEuigz+qeCI/yKk4v5Ab4j4AACDBWhxOPmszkr3JUCY/brIPwA+3EUBgOq1AL48sPw9R4r/btCW9IgE3wPCZRL+yNYfApFCgv4wjhsDfYKA/tFq2v8byhb2QNaU8a44qwBVLM8C5gSLAGvHrv5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJs/ATcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5mUa9AAAAACBR678AAAAADzJYPQAAAACDSeo/AAAAAA9IBz4AAAAAO9LsPwAAAADVVP69AAAAAM804b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2a842AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8HqtvAAAAACqluW/AAAAAA7DDz4AAAAA4Un6PwAAAAAgvAA+AAAAAMjY9T8AAAAAxpI1PAAAAACYQ/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR7PVNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOZwUL0AAAAAzxD4vwAAAACPPKo8AAAAADw+AEAAAAAAeMMZvQAAAAAAt+4/AAAAAGl4Fb0AAAAA+F3evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsssjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC//xG9AAAAAMzK2r8AAAAAUnLePQAAAADyCO0/AAAAAAwMzjwAAAAAgMDkPwAAAAD4r4e9AAAAAMZD+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB3OOLiuMeMAWyUTegDjAF0lEdAqcUdGCqZMXV9lChoBkdAkVansPatcWgHTegDaAhHQKnFmn4wh4d1fZQoaAZHQJDEEk1Mue1oB03oA2gIR0Cpxi/r8iwCdX2UKGgGR0CRM49ovi97aAdN6ANoCEdAqdCy5AhStXV9lChoBkdAkZzwKKHfuWgHTegDaAhHQKnSeE7nxKB1fZQoaAZHQJDMg5yU9p1oB03oA2gIR0Cp0vASeyzHdX2UKGgGR0CRosyJKraNaAdN6ANoCEdAqdN+hAWznnV9lChoBkdAkGZ0Q5FPSGgHTegDaAhHQKneL1A7gbZ1fZQoaAZHQI7fB2OhkAhoB03oA2gIR0Cp3+8RL9MsdX2UKGgGR0CKa58E3bVSaAdN6ANoCEdAqeBoUSIxg3V9lChoBkdAjUuLEtNBW2gHTegDaAhHQKng+hqTKT11fZQoaAZHQI0BoemvW6NoB03oA2gIR0Cp65212JSBdX2UKGgGR0CEE2Jxeb/faAdN6ANoCEdAqe1Wrn1WbXV9lChoBkdAj7mxIBikPGgHTegDaAhHQKnt1cZ9/jN1fZQoaAZHQIq808ox59poB03oA2gIR0Cp7mggX/HYdX2UKGgGR0CMbP73PAwgaAdN6ANoCEdAqfkNCLMs6XV9lChoBkdAim+vMjeKsWgHTegDaAhHQKn6ziMo+fR1fZQoaAZHQIv+Pwy6+WZoB03oA2gIR0Cp+0nEuQIVdX2UKGgGR0COI1TGYKIBaAdN6ANoCEdAqfvbviLl3nV9lChoBkdAjQkBltj0+WgHTegDaAhHQKoGb7O3UhF1fZQoaAZHQIpbh8a4tpVoB03oA2gIR0CqCDHssxwidX2UKGgGR0CKU8TzND+jaAdN6ANoCEdAqgimRDCxeXV9lChoBkdAh2c9ZzPrwGgHTegDaAhHQKoJMzi0fHR1fZQoaAZHQIvq/6oESuhoB03oA2gIR0CqE519v0iAdX2UKGgGR0CNCLYDklu4aAdN6ANoCEdAqhVL+YMOPXV9lChoBkdAiy5RRuTA32gHTegDaAhHQKoVyHyEtd11fZQoaAZHQJBmLEk0JnhoB03oA2gIR0CqFlgEEC/5dX2UKGgGR0CO39IKc/dJaAdN6ANoCEdAqiDVUKiPAHV9lChoBkdAiwqL7oB7u2gHTegDaAhHQKoimIE8q4J1fZQoaAZHQIn74wIt16poB03oA2gIR0CqIxsPJ7swdX2UKGgGR0CG9pzOHFglaAdN6ANoCEdAqiOrwpe/pXV9lChoBkdAh7TbxEv0y2gHTegDaAhHQKouKMWoFV11fZQoaAZHQIQxFTzd1uBoB03oA2gIR0CqL9vo3aSLdX2UKGgGR0CDsZOLzf78aAdN6ANoCEdAqjBbilzltHV9lChoBkdAjmjtsWO6umgHTegDaAhHQKow6OU+s5p1fZQoaAZHQIW1G6unuRdoB03oA2gIR0CqO4jMvAXVdX2UKGgGR0CHVMKhtcfOaAdN6ANoCEdAqj1MqQRwqHV9lChoBkdAhtaRPGhmG2gHTegDaAhHQKo9x+7UXpJ1fZQoaAZHQIj4p7AtWdVoB03oA2gIR0CqPlgsCkoGdX2UKGgGR0CIIoGVRk3CaAdN6ANoCEdAqkjDRjSXt3V9lChoBkdAhMZwljVhC2gHTegDaAhHQKpKdVinYQJ1fZQoaAZHQIhG/jyWiURoB03oA2gIR0CqSu/CqIacdX2UKGgGR0CGrOPxx1gZaAdN6ANoCEdAqkt++RHPNXV9lChoBkdAhj7dHDrJKmgHTegDaAhHQKpV+w8nuzB1fZQoaAZHQJF1TYwqRU5oB03oA2gIR0CqV6x3NcGDdX2UKGgGR0CMgn7BwdbQaAdN6ANoCEdAqlgpgRbr1XV9lChoBkdAi8PUxM36ymgHTegDaAhHQKpYtlDneSB1fZQoaAZHQIhQVxjriVBoB03oA2gIR0CqZK3uNPxhdX2UKGgGR0CF2t6+FlCkaAdN6ANoCEdAqmZznV5KOHV9lChoBkdAjkMPxpcopmgHTegDaAhHQKpm6pb2USt1fZQoaAZHQIH8EYCQtBhoB03oA2gIR0CqZ4BB7eEadX2UKGgGR0CPu8aEzwc6aAdN6ANoCEdAqnHwhyKekHV9lChoBkdAjaP3Td+G5GgHTegDaAhHQKpzqn0kGA11fZQoaAZHQJAcvwBo24xoB03oA2gIR0CqdCNiQT24dX2UKGgGR0CRHgVJtix3aAdN6ANoCEdAqnSs4xUNrnV9lChoBkdAkXYS9ytFKGgHTegDaAhHQKp/Jwe/5+J1fZQoaAZHQIfAOll9SdhoB03oA2gIR0CqgNkLQXyidX2UKGgGR0CRsO2/zreJaAdN6ANoCEdAqoFUL6UJOXV9lChoBkdAkOOB4ptrK2gHTegDaAhHQKqB51mJ3xF1fZQoaAZHQI4iGTPjXFtoB03oA2gIR0CqjERrrPdEdX2UKGgGR0CQJGYr8R+SaAdN6ANoCEdAqo3z3IuGsXV9lChoBkdAjQUaMBIWg2gHTegDaAhHQKqObWn0kGB1fZQoaAZHQJGyknVoYeloB03oA2gIR0Cqjvr8JlasdX2UKGgGR0CQhcK+BYmtaAdN6ANoCEdAqpl7/ACW/3V9lChoBkdAkAAZwCKaX2gHTegDaAhHQKqbLGKhtch1fZQoaAZHQJBKrv/io89oB03oA2gIR0Cqm6efqX4TdX2UKGgGR0CSFmZeRgZ1aAdN6ANoCEdAqpw5+vyLAHV9lChoBkdAkaijOTq0MWgHTegDaAhHQKqmxpkf9xZ1fZQoaAZHQJI92BwuM/BoB03oA2gIR0CqqII1LrX2dX2UKGgGR0CRh7sk6cRUaAdN6ANoCEdAqqj4USIxg3V9lChoBkdAkN8EmY0EYGgHTegDaAhHQKqpiPRRdhR1fZQoaAZHQJHV3y08eS1oB03oA2gIR0CqtA2MS9M9dX2UKGgGR0CRzup5/smfaAdN6ANoCEdAqrW63LFGX3V9lChoBkdAkj6Y4Ia99WgHTegDaAhHQKq2M2UjcEh1fZQoaAZHQIUy7utwJgNoB03oA2gIR0CqtsKDCgscdX2UKGgGR0CLYdFYuCf6aAdN6ANoCEdAqsEoLApKBnV9lChoBkdAiqvIh6jWTWgHTegDaAhHQKrC4CSRr8B1fZQoaAZHQIiiydWhh6VoB03oA2gIR0Cqw11ZDArQdX2UKGgGR0CNx43o9s7/aAdN6ANoCEdAqsPuzSkTH3V9lChoBkdAiy98hkiD/WgHTegDaAhHQKrOeMhHLA51fZQoaAZHQJAdXz4DcM5oB03oA2gIR0Cq0CQaJhvzdX2UKGgGR0CRgXrZ8KG+aAdN6ANoCEdAqtCd9ph4MXV9lChoBkdAjSt/GMn7YWgHTegDaAhHQKrRKxYaHbh1fZQoaAZHQJBOuS7oSthoB03oA2gIR0Cq26CE6DGtdX2UKGgGR0CNUDHCGetkaAdN6ANoCEdAqt2WICU5dXV9lChoBkdAj0vohpxm02gHTegDaAhHQKreDZJTVDt1fZQoaAZHQI2AI3Lmp2loB03oA2gIR0Cq3pmnwXqJdX2UKGgGR0CPkYVmBe5XaAdN6ANoCEdAqukIvDgqE3V9lChoBkdAjeHHh0hePmgHTegDaAhHQKrqveC04R51fZQoaAZHQJDkIkleF+NoB03oA2gIR0Cq6zlsP8Q7dX2UKGgGR0CQkx7ZnL7oaAdN6ANoCEdAquvK0IC2dHV9lChoBkdAjubjB2wFDGgHTegDaAhHQKr2aKZUkv91fZQoaAZHQI/4o+fRNRFoB03oA2gIR0Cq+BUtI066dX2UKGgGR0CLKBQAuIykaAdN6ANoCEdAqviQZVGTcXV9lChoBkdAivONfgJkXmgHTegDaAhHQKr5HNHH3lF1fZQoaAZHQIp172alUIdoB03oA2gIR0CrBBOD8LrpdX2UKGgGR0CNNK2Kl54XaAdN6ANoCEdAqwXN/e+EiHV9lChoBkdAidqNAs052mgHTegDaAhHQKsGSd0aIep1fZQoaAZHQI76QPuogmtoB03oA2gIR0CrBtxYRujzdX2UKGgGR0CJLp5OafBfaAdN6ANoCEdAqxEsC7sfJXVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 63326,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
A2C-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:243f6abb1634e9c3e3c8b1df57addbd5b42076886d204655f2e538a4484d67f9
|
3 |
+
size 56126
|
A2C-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec8653b0c405fb24e213ed0a4b1c74eead2c1e33699dd636413a6a43afa789b9
|
3 |
+
size 56766
|
A2C-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
A2C-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.6.0
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 822.42 +/- 48.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b18b87d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b18b87dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b18b87e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b18b87ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f8b18b87f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b18b8e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b18b8e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b18b8e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b18b8e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b18b8e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b18b8e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b18bdc570>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661949176.2824688, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA8FErvnC3oz7r9xw/X2xcP9oi0j2acnK+Ku/tPjVCp75PSfi/otrsvzaEFL5xxs0/UMe7PztUCL8pung+FQdJP6FDKz9tKw8/+6QEP08jub+d784/KK4tPeJjNz4qoMM+a44qwBHDtj4PpMk+t+EKPwDeZT5UtmS/uAIMvF4hSUCVkh3AkNpQwDkFMz9UITo+24RrP/KrjD2HIOY+aVJQPVp+CD8s7NY/fotCvy2lQ8DrgBq/nqGFvwf99j0z90+98VzNP3ZsvTsCEDu/riCZPswfwD4Rw7Y+D6TJPhrx67+TK9G+maTRPnCrID8jJi6/A4wEP1fVI75ObpE/ey4mPxFWDsAExsY+5fuAvimsLbyqd70/MIQbvRghOb88Pjc9tw4UP1EO5z4MQDo/jUZ4vvrDyj+pi1A+T6A3v5v9yL3MH8A+EcO2Pg+kyT634Qo/SdQUQEuigz+qeCI/yKk4v5Ab4j4AACDBWhxOPmszkr3JUCY/brIPwA+3EUBgOq1AL48sPw9R4r/btCW9IgE3wPCZRL+yNYfApFCgv4wjhsDfYKA/tFq2v8byhb2QNaU8a44qwBVLM8C5gSLAGvHrv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJs/ATcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5mUa9AAAAACBR678AAAAADzJYPQAAAACDSeo/AAAAAA9IBz4AAAAAO9LsPwAAAADVVP69AAAAAM804b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2a842AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8HqtvAAAAACqluW/AAAAAA7DDz4AAAAA4Un6PwAAAAAgvAA+AAAAAMjY9T8AAAAAxpI1PAAAAACYQ/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR7PVNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOZwUL0AAAAAzxD4vwAAAACPPKo8AAAAADw+AEAAAAAAeMMZvQAAAAAAt+4/AAAAAGl4Fb0AAAAA+F3evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsssjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC//xG9AAAAAMzK2r8AAAAAUnLePQAAAADyCO0/AAAAAAwMzjwAAAAAgMDkPwAAAAD4r4e9AAAAAMZD+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB3OOLiuMeMAWyUTegDjAF0lEdAqcUdGCqZMXV9lChoBkdAkVansPatcWgHTegDaAhHQKnFmn4wh4d1fZQoaAZHQJDEEk1Mue1oB03oA2gIR0Cpxi/r8iwCdX2UKGgGR0CRM49ovi97aAdN6ANoCEdAqdCy5AhStXV9lChoBkdAkZzwKKHfuWgHTegDaAhHQKnSeE7nxKB1fZQoaAZHQJDMg5yU9p1oB03oA2gIR0Cp0vASeyzHdX2UKGgGR0CRosyJKraNaAdN6ANoCEdAqdN+hAWznnV9lChoBkdAkGZ0Q5FPSGgHTegDaAhHQKneL1A7gbZ1fZQoaAZHQI7fB2OhkAhoB03oA2gIR0Cp3+8RL9MsdX2UKGgGR0CKa58E3bVSaAdN6ANoCEdAqeBoUSIxg3V9lChoBkdAjUuLEtNBW2gHTegDaAhHQKng+hqTKT11fZQoaAZHQI0BoemvW6NoB03oA2gIR0Cp65212JSBdX2UKGgGR0CEE2Jxeb/faAdN6ANoCEdAqe1Wrn1WbXV9lChoBkdAj7mxIBikPGgHTegDaAhHQKnt1cZ9/jN1fZQoaAZHQIq808ox59poB03oA2gIR0Cp7mggX/HYdX2UKGgGR0CMbP73PAwgaAdN6ANoCEdAqfkNCLMs6XV9lChoBkdAim+vMjeKsWgHTegDaAhHQKn6ziMo+fR1fZQoaAZHQIv+Pwy6+WZoB03oA2gIR0Cp+0nEuQIVdX2UKGgGR0COI1TGYKIBaAdN6ANoCEdAqfvbviLl3nV9lChoBkdAjQkBltj0+WgHTegDaAhHQKoGb7O3UhF1fZQoaAZHQIpbh8a4tpVoB03oA2gIR0CqCDHssxwidX2UKGgGR0CKU8TzND+jaAdN6ANoCEdAqgimRDCxeXV9lChoBkdAh2c9ZzPrwGgHTegDaAhHQKoJMzi0fHR1fZQoaAZHQIvq/6oESuhoB03oA2gIR0CqE519v0iAdX2UKGgGR0CNCLYDklu4aAdN6ANoCEdAqhVL+YMOPXV9lChoBkdAiy5RRuTA32gHTegDaAhHQKoVyHyEtd11fZQoaAZHQJBmLEk0JnhoB03oA2gIR0CqFlgEEC/5dX2UKGgGR0CO39IKc/dJaAdN6ANoCEdAqiDVUKiPAHV9lChoBkdAiwqL7oB7u2gHTegDaAhHQKoimIE8q4J1fZQoaAZHQIn74wIt16poB03oA2gIR0CqIxsPJ7swdX2UKGgGR0CG9pzOHFglaAdN6ANoCEdAqiOrwpe/pXV9lChoBkdAh7TbxEv0y2gHTegDaAhHQKouKMWoFV11fZQoaAZHQIQxFTzd1uBoB03oA2gIR0CqL9vo3aSLdX2UKGgGR0CDsZOLzf78aAdN6ANoCEdAqjBbilzltHV9lChoBkdAjmjtsWO6umgHTegDaAhHQKow6OU+s5p1fZQoaAZHQIW1G6unuRdoB03oA2gIR0CqO4jMvAXVdX2UKGgGR0CHVMKhtcfOaAdN6ANoCEdAqj1MqQRwqHV9lChoBkdAhtaRPGhmG2gHTegDaAhHQKo9x+7UXpJ1fZQoaAZHQIj4p7AtWdVoB03oA2gIR0CqPlgsCkoGdX2UKGgGR0CIIoGVRk3CaAdN6ANoCEdAqkjDRjSXt3V9lChoBkdAhMZwljVhC2gHTegDaAhHQKpKdVinYQJ1fZQoaAZHQIhG/jyWiURoB03oA2gIR0CqSu/CqIacdX2UKGgGR0CGrOPxx1gZaAdN6ANoCEdAqkt++RHPNXV9lChoBkdAhj7dHDrJKmgHTegDaAhHQKpV+w8nuzB1fZQoaAZHQJF1TYwqRU5oB03oA2gIR0CqV6x3NcGDdX2UKGgGR0CMgn7BwdbQaAdN6ANoCEdAqlgpgRbr1XV9lChoBkdAi8PUxM36ymgHTegDaAhHQKpYtlDneSB1fZQoaAZHQIhQVxjriVBoB03oA2gIR0CqZK3uNPxhdX2UKGgGR0CF2t6+FlCkaAdN6ANoCEdAqmZznV5KOHV9lChoBkdAjkMPxpcopmgHTegDaAhHQKpm6pb2USt1fZQoaAZHQIH8EYCQtBhoB03oA2gIR0CqZ4BB7eEadX2UKGgGR0CPu8aEzwc6aAdN6ANoCEdAqnHwhyKekHV9lChoBkdAjaP3Td+G5GgHTegDaAhHQKpzqn0kGA11fZQoaAZHQJAcvwBo24xoB03oA2gIR0CqdCNiQT24dX2UKGgGR0CRHgVJtix3aAdN6ANoCEdAqnSs4xUNrnV9lChoBkdAkXYS9ytFKGgHTegDaAhHQKp/Jwe/5+J1fZQoaAZHQIfAOll9SdhoB03oA2gIR0CqgNkLQXyidX2UKGgGR0CRsO2/zreJaAdN6ANoCEdAqoFUL6UJOXV9lChoBkdAkOOB4ptrK2gHTegDaAhHQKqB51mJ3xF1fZQoaAZHQI4iGTPjXFtoB03oA2gIR0CqjERrrPdEdX2UKGgGR0CQJGYr8R+SaAdN6ANoCEdAqo3z3IuGsXV9lChoBkdAjQUaMBIWg2gHTegDaAhHQKqObWn0kGB1fZQoaAZHQJGyknVoYeloB03oA2gIR0Cqjvr8JlasdX2UKGgGR0CQhcK+BYmtaAdN6ANoCEdAqpl7/ACW/3V9lChoBkdAkAAZwCKaX2gHTegDaAhHQKqbLGKhtch1fZQoaAZHQJBKrv/io89oB03oA2gIR0Cqm6efqX4TdX2UKGgGR0CSFmZeRgZ1aAdN6ANoCEdAqpw5+vyLAHV9lChoBkdAkaijOTq0MWgHTegDaAhHQKqmxpkf9xZ1fZQoaAZHQJI92BwuM/BoB03oA2gIR0CqqII1LrX2dX2UKGgGR0CRh7sk6cRUaAdN6ANoCEdAqqj4USIxg3V9lChoBkdAkN8EmY0EYGgHTegDaAhHQKqpiPRRdhR1fZQoaAZHQJHV3y08eS1oB03oA2gIR0CqtA2MS9M9dX2UKGgGR0CRzup5/smfaAdN6ANoCEdAqrW63LFGX3V9lChoBkdAkj6Y4Ia99WgHTegDaAhHQKq2M2UjcEh1fZQoaAZHQIUy7utwJgNoB03oA2gIR0CqtsKDCgscdX2UKGgGR0CLYdFYuCf6aAdN6ANoCEdAqsEoLApKBnV9lChoBkdAiqvIh6jWTWgHTegDaAhHQKrC4CSRr8B1fZQoaAZHQIiiydWhh6VoB03oA2gIR0Cqw11ZDArQdX2UKGgGR0CNx43o9s7/aAdN6ANoCEdAqsPuzSkTH3V9lChoBkdAiy98hkiD/WgHTegDaAhHQKrOeMhHLA51fZQoaAZHQJAdXz4DcM5oB03oA2gIR0Cq0CQaJhvzdX2UKGgGR0CRgXrZ8KG+aAdN6ANoCEdAqtCd9ph4MXV9lChoBkdAjSt/GMn7YWgHTegDaAhHQKrRKxYaHbh1fZQoaAZHQJBOuS7oSthoB03oA2gIR0Cq26CE6DGtdX2UKGgGR0CNUDHCGetkaAdN6ANoCEdAqt2WICU5dXV9lChoBkdAj0vohpxm02gHTegDaAhHQKreDZJTVDt1fZQoaAZHQI2AI3Lmp2loB03oA2gIR0Cq3pmnwXqJdX2UKGgGR0CPkYVmBe5XaAdN6ANoCEdAqukIvDgqE3V9lChoBkdAjeHHh0hePmgHTegDaAhHQKrqveC04R51fZQoaAZHQJDkIkleF+NoB03oA2gIR0Cq6zlsP8Q7dX2UKGgGR0CQkx7ZnL7oaAdN6ANoCEdAquvK0IC2dHV9lChoBkdAjubjB2wFDGgHTegDaAhHQKr2aKZUkv91fZQoaAZHQI/4o+fRNRFoB03oA2gIR0Cq+BUtI066dX2UKGgGR0CLKBQAuIykaAdN6ANoCEdAqviQZVGTcXV9lChoBkdAivONfgJkXmgHTegDaAhHQKr5HNHH3lF1fZQoaAZHQIp172alUIdoB03oA2gIR0CrBBOD8LrpdX2UKGgGR0CNNK2Kl54XaAdN6ANoCEdAqwXN/e+EiHV9lChoBkdAidqNAs052mgHTegDaAhHQKsGSd0aIep1fZQoaAZHQI76QPuogmtoB03oA2gIR0CrBtxYRujzdX2UKGgGR0CJLp5OafBfaAdN6ANoCEdAqxEsC7sfJXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 63326, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (908 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 822.4203915828257, "std_reward": 48.823754909047125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-31T13:31:59.547936"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3f96663a22354f739a5ad9768b045894686f8384803b2934225e72e813f52ed5
|
3 |
+
size 2763
|