29thDay commited on
Commit
61e86ad
1 Parent(s): c898106

Initial commit

Browse files
A2C-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2230e5a0e87351f4ac6fb051d9cc80f677b6f5367be6ab33a8bbff939a6da43c
3
+ size 129193
A2C-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
A2C-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b18b87d40>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b18b87dd0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b18b87e60>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b18b87ef0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8b18b87f80>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8b18b8e050>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b18b8e0e0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8b18b8e170>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b18b8e200>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b18b8e290>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b18b8e320>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8b18bdc570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1661949176.2824688,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA8FErvnC3oz7r9xw/X2xcP9oi0j2acnK+Ku/tPjVCp75PSfi/otrsvzaEFL5xxs0/UMe7PztUCL8pung+FQdJP6FDKz9tKw8/+6QEP08jub+d784/KK4tPeJjNz4qoMM+a44qwBHDtj4PpMk+t+EKPwDeZT5UtmS/uAIMvF4hSUCVkh3AkNpQwDkFMz9UITo+24RrP/KrjD2HIOY+aVJQPVp+CD8s7NY/fotCvy2lQ8DrgBq/nqGFvwf99j0z90+98VzNP3ZsvTsCEDu/riCZPswfwD4Rw7Y+D6TJPhrx67+TK9G+maTRPnCrID8jJi6/A4wEP1fVI75ObpE/ey4mPxFWDsAExsY+5fuAvimsLbyqd70/MIQbvRghOb88Pjc9tw4UP1EO5z4MQDo/jUZ4vvrDyj+pi1A+T6A3v5v9yL3MH8A+EcO2Pg+kyT634Qo/SdQUQEuigz+qeCI/yKk4v5Ab4j4AACDBWhxOPmszkr3JUCY/brIPwA+3EUBgOq1AL48sPw9R4r/btCW9IgE3wPCZRL+yNYfApFCgv4wjhsDfYKA/tFq2v8byhb2QNaU8a44qwBVLM8C5gSLAGvHrv5R0lGIu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJs/ATcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5mUa9AAAAACBR678AAAAADzJYPQAAAACDSeo/AAAAAA9IBz4AAAAAO9LsPwAAAADVVP69AAAAAM804b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2a842AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8HqtvAAAAACqluW/AAAAAA7DDz4AAAAA4Un6PwAAAAAgvAA+AAAAAMjY9T8AAAAAxpI1PAAAAACYQ/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR7PVNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOZwUL0AAAAAzxD4vwAAAACPPKo8AAAAADw+AEAAAAAAeMMZvQAAAAAAt+4/AAAAAGl4Fb0AAAAA+F3evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsssjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC//xG9AAAAAMzK2r8AAAAAUnLePQAAAADyCO0/AAAAAAwMzjwAAAAAgMDkPwAAAAD4r4e9AAAAAMZD+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB3OOLiuMeMAWyUTegDjAF0lEdAqcUdGCqZMXV9lChoBkdAkVansPatcWgHTegDaAhHQKnFmn4wh4d1fZQoaAZHQJDEEk1Mue1oB03oA2gIR0Cpxi/r8iwCdX2UKGgGR0CRM49ovi97aAdN6ANoCEdAqdCy5AhStXV9lChoBkdAkZzwKKHfuWgHTegDaAhHQKnSeE7nxKB1fZQoaAZHQJDMg5yU9p1oB03oA2gIR0Cp0vASeyzHdX2UKGgGR0CRosyJKraNaAdN6ANoCEdAqdN+hAWznnV9lChoBkdAkGZ0Q5FPSGgHTegDaAhHQKneL1A7gbZ1fZQoaAZHQI7fB2OhkAhoB03oA2gIR0Cp3+8RL9MsdX2UKGgGR0CKa58E3bVSaAdN6ANoCEdAqeBoUSIxg3V9lChoBkdAjUuLEtNBW2gHTegDaAhHQKng+hqTKT11fZQoaAZHQI0BoemvW6NoB03oA2gIR0Cp65212JSBdX2UKGgGR0CEE2Jxeb/faAdN6ANoCEdAqe1Wrn1WbXV9lChoBkdAj7mxIBikPGgHTegDaAhHQKnt1cZ9/jN1fZQoaAZHQIq808ox59poB03oA2gIR0Cp7mggX/HYdX2UKGgGR0CMbP73PAwgaAdN6ANoCEdAqfkNCLMs6XV9lChoBkdAim+vMjeKsWgHTegDaAhHQKn6ziMo+fR1fZQoaAZHQIv+Pwy6+WZoB03oA2gIR0Cp+0nEuQIVdX2UKGgGR0COI1TGYKIBaAdN6ANoCEdAqfvbviLl3nV9lChoBkdAjQkBltj0+WgHTegDaAhHQKoGb7O3UhF1fZQoaAZHQIpbh8a4tpVoB03oA2gIR0CqCDHssxwidX2UKGgGR0CKU8TzND+jaAdN6ANoCEdAqgimRDCxeXV9lChoBkdAh2c9ZzPrwGgHTegDaAhHQKoJMzi0fHR1fZQoaAZHQIvq/6oESuhoB03oA2gIR0CqE519v0iAdX2UKGgGR0CNCLYDklu4aAdN6ANoCEdAqhVL+YMOPXV9lChoBkdAiy5RRuTA32gHTegDaAhHQKoVyHyEtd11fZQoaAZHQJBmLEk0JnhoB03oA2gIR0CqFlgEEC/5dX2UKGgGR0CO39IKc/dJaAdN6ANoCEdAqiDVUKiPAHV9lChoBkdAiwqL7oB7u2gHTegDaAhHQKoimIE8q4J1fZQoaAZHQIn74wIt16poB03oA2gIR0CqIxsPJ7swdX2UKGgGR0CG9pzOHFglaAdN6ANoCEdAqiOrwpe/pXV9lChoBkdAh7TbxEv0y2gHTegDaAhHQKouKMWoFV11fZQoaAZHQIQxFTzd1uBoB03oA2gIR0CqL9vo3aSLdX2UKGgGR0CDsZOLzf78aAdN6ANoCEdAqjBbilzltHV9lChoBkdAjmjtsWO6umgHTegDaAhHQKow6OU+s5p1fZQoaAZHQIW1G6unuRdoB03oA2gIR0CqO4jMvAXVdX2UKGgGR0CHVMKhtcfOaAdN6ANoCEdAqj1MqQRwqHV9lChoBkdAhtaRPGhmG2gHTegDaAhHQKo9x+7UXpJ1fZQoaAZHQIj4p7AtWdVoB03oA2gIR0CqPlgsCkoGdX2UKGgGR0CIIoGVRk3CaAdN6ANoCEdAqkjDRjSXt3V9lChoBkdAhMZwljVhC2gHTegDaAhHQKpKdVinYQJ1fZQoaAZHQIhG/jyWiURoB03oA2gIR0CqSu/CqIacdX2UKGgGR0CGrOPxx1gZaAdN6ANoCEdAqkt++RHPNXV9lChoBkdAhj7dHDrJKmgHTegDaAhHQKpV+w8nuzB1fZQoaAZHQJF1TYwqRU5oB03oA2gIR0CqV6x3NcGDdX2UKGgGR0CMgn7BwdbQaAdN6ANoCEdAqlgpgRbr1XV9lChoBkdAi8PUxM36ymgHTegDaAhHQKpYtlDneSB1fZQoaAZHQIhQVxjriVBoB03oA2gIR0CqZK3uNPxhdX2UKGgGR0CF2t6+FlCkaAdN6ANoCEdAqmZznV5KOHV9lChoBkdAjkMPxpcopmgHTegDaAhHQKpm6pb2USt1fZQoaAZHQIH8EYCQtBhoB03oA2gIR0CqZ4BB7eEadX2UKGgGR0CPu8aEzwc6aAdN6ANoCEdAqnHwhyKekHV9lChoBkdAjaP3Td+G5GgHTegDaAhHQKpzqn0kGA11fZQoaAZHQJAcvwBo24xoB03oA2gIR0CqdCNiQT24dX2UKGgGR0CRHgVJtix3aAdN6ANoCEdAqnSs4xUNrnV9lChoBkdAkXYS9ytFKGgHTegDaAhHQKp/Jwe/5+J1fZQoaAZHQIfAOll9SdhoB03oA2gIR0CqgNkLQXyidX2UKGgGR0CRsO2/zreJaAdN6ANoCEdAqoFUL6UJOXV9lChoBkdAkOOB4ptrK2gHTegDaAhHQKqB51mJ3xF1fZQoaAZHQI4iGTPjXFtoB03oA2gIR0CqjERrrPdEdX2UKGgGR0CQJGYr8R+SaAdN6ANoCEdAqo3z3IuGsXV9lChoBkdAjQUaMBIWg2gHTegDaAhHQKqObWn0kGB1fZQoaAZHQJGyknVoYeloB03oA2gIR0Cqjvr8JlasdX2UKGgGR0CQhcK+BYmtaAdN6ANoCEdAqpl7/ACW/3V9lChoBkdAkAAZwCKaX2gHTegDaAhHQKqbLGKhtch1fZQoaAZHQJBKrv/io89oB03oA2gIR0Cqm6efqX4TdX2UKGgGR0CSFmZeRgZ1aAdN6ANoCEdAqpw5+vyLAHV9lChoBkdAkaijOTq0MWgHTegDaAhHQKqmxpkf9xZ1fZQoaAZHQJI92BwuM/BoB03oA2gIR0CqqII1LrX2dX2UKGgGR0CRh7sk6cRUaAdN6ANoCEdAqqj4USIxg3V9lChoBkdAkN8EmY0EYGgHTegDaAhHQKqpiPRRdhR1fZQoaAZHQJHV3y08eS1oB03oA2gIR0CqtA2MS9M9dX2UKGgGR0CRzup5/smfaAdN6ANoCEdAqrW63LFGX3V9lChoBkdAkj6Y4Ia99WgHTegDaAhHQKq2M2UjcEh1fZQoaAZHQIUy7utwJgNoB03oA2gIR0CqtsKDCgscdX2UKGgGR0CLYdFYuCf6aAdN6ANoCEdAqsEoLApKBnV9lChoBkdAiqvIh6jWTWgHTegDaAhHQKrC4CSRr8B1fZQoaAZHQIiiydWhh6VoB03oA2gIR0Cqw11ZDArQdX2UKGgGR0CNx43o9s7/aAdN6ANoCEdAqsPuzSkTH3V9lChoBkdAiy98hkiD/WgHTegDaAhHQKrOeMhHLA51fZQoaAZHQJAdXz4DcM5oB03oA2gIR0Cq0CQaJhvzdX2UKGgGR0CRgXrZ8KG+aAdN6ANoCEdAqtCd9ph4MXV9lChoBkdAjSt/GMn7YWgHTegDaAhHQKrRKxYaHbh1fZQoaAZHQJBOuS7oSthoB03oA2gIR0Cq26CE6DGtdX2UKGgGR0CNUDHCGetkaAdN6ANoCEdAqt2WICU5dXV9lChoBkdAj0vohpxm02gHTegDaAhHQKreDZJTVDt1fZQoaAZHQI2AI3Lmp2loB03oA2gIR0Cq3pmnwXqJdX2UKGgGR0CPkYVmBe5XaAdN6ANoCEdAqukIvDgqE3V9lChoBkdAjeHHh0hePmgHTegDaAhHQKrqveC04R51fZQoaAZHQJDkIkleF+NoB03oA2gIR0Cq6zlsP8Q7dX2UKGgGR0CQkx7ZnL7oaAdN6ANoCEdAquvK0IC2dHV9lChoBkdAjubjB2wFDGgHTegDaAhHQKr2aKZUkv91fZQoaAZHQI/4o+fRNRFoB03oA2gIR0Cq+BUtI066dX2UKGgGR0CLKBQAuIykaAdN6ANoCEdAqviQZVGTcXV9lChoBkdAivONfgJkXmgHTegDaAhHQKr5HNHH3lF1fZQoaAZHQIp172alUIdoB03oA2gIR0CrBBOD8LrpdX2UKGgGR0CNNK2Kl54XaAdN6ANoCEdAqwXN/e+EiHV9lChoBkdAidqNAs052mgHTegDaAhHQKsGSd0aIep1fZQoaAZHQI76QPuogmtoB03oA2gIR0CrBtxYRujzdX2UKGgGR0CJLp5OafBfaAdN6ANoCEdAqxEsC7sfJXVlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 63326,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
A2C-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:243f6abb1634e9c3e3c8b1df57addbd5b42076886d204655f2e538a4484d67f9
3
+ size 56126
A2C-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec8653b0c405fb24e213ed0a4b1c74eead2c1e33699dd636413a6a43afa789b9
3
+ size 56766
A2C-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
A2C-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 822.42 +/- 48.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8b18b87d40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8b18b87dd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8b18b87e60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8b18b87ef0>", "_build": "<function ActorCriticPolicy._build at 0x7f8b18b87f80>", "forward": "<function ActorCriticPolicy.forward at 0x7f8b18b8e050>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8b18b8e0e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8b18b8e170>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8b18b8e200>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8b18b8e290>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8b18b8e320>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8b18bdc570>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1661949176.2824688, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAA8FErvnC3oz7r9xw/X2xcP9oi0j2acnK+Ku/tPjVCp75PSfi/otrsvzaEFL5xxs0/UMe7PztUCL8pung+FQdJP6FDKz9tKw8/+6QEP08jub+d784/KK4tPeJjNz4qoMM+a44qwBHDtj4PpMk+t+EKPwDeZT5UtmS/uAIMvF4hSUCVkh3AkNpQwDkFMz9UITo+24RrP/KrjD2HIOY+aVJQPVp+CD8s7NY/fotCvy2lQ8DrgBq/nqGFvwf99j0z90+98VzNP3ZsvTsCEDu/riCZPswfwD4Rw7Y+D6TJPhrx67+TK9G+maTRPnCrID8jJi6/A4wEP1fVI75ObpE/ey4mPxFWDsAExsY+5fuAvimsLbyqd70/MIQbvRghOb88Pjc9tw4UP1EO5z4MQDo/jUZ4vvrDyj+pi1A+T6A3v5v9yL3MH8A+EcO2Pg+kyT634Qo/SdQUQEuigz+qeCI/yKk4v5Ab4j4AACDBWhxOPmszkr3JUCY/brIPwA+3EUBgOq1AL48sPw9R4r/btCW9IgE3wPCZRL+yNYfApFCgv4wjhsDfYKA/tFq2v8byhb2QNaU8a44qwBVLM8C5gSLAGvHrv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAAJs/ATcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC5mUa9AAAAACBR678AAAAADzJYPQAAAACDSeo/AAAAAA9IBz4AAAAAO9LsPwAAAADVVP69AAAAAM804b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD2a842AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8HqtvAAAAACqluW/AAAAAA7DDz4AAAAA4Un6PwAAAAAgvAA+AAAAAMjY9T8AAAAAxpI1PAAAAACYQ/y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAR7PVNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOZwUL0AAAAAzxD4vwAAAACPPKo8AAAAADw+AEAAAAAAeMMZvQAAAAAAt+4/AAAAAGl4Fb0AAAAA+F3evwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEsssjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC//xG9AAAAAMzK2r8AAAAAUnLePQAAAADyCO0/AAAAAAwMzjwAAAAAgMDkPwAAAAD4r4e9AAAAAMZD+L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJB3OOLiuMeMAWyUTegDjAF0lEdAqcUdGCqZMXV9lChoBkdAkVansPatcWgHTegDaAhHQKnFmn4wh4d1fZQoaAZHQJDEEk1Mue1oB03oA2gIR0Cpxi/r8iwCdX2UKGgGR0CRM49ovi97aAdN6ANoCEdAqdCy5AhStXV9lChoBkdAkZzwKKHfuWgHTegDaAhHQKnSeE7nxKB1fZQoaAZHQJDMg5yU9p1oB03oA2gIR0Cp0vASeyzHdX2UKGgGR0CRosyJKraNaAdN6ANoCEdAqdN+hAWznnV9lChoBkdAkGZ0Q5FPSGgHTegDaAhHQKneL1A7gbZ1fZQoaAZHQI7fB2OhkAhoB03oA2gIR0Cp3+8RL9MsdX2UKGgGR0CKa58E3bVSaAdN6ANoCEdAqeBoUSIxg3V9lChoBkdAjUuLEtNBW2gHTegDaAhHQKng+hqTKT11fZQoaAZHQI0BoemvW6NoB03oA2gIR0Cp65212JSBdX2UKGgGR0CEE2Jxeb/faAdN6ANoCEdAqe1Wrn1WbXV9lChoBkdAj7mxIBikPGgHTegDaAhHQKnt1cZ9/jN1fZQoaAZHQIq808ox59poB03oA2gIR0Cp7mggX/HYdX2UKGgGR0CMbP73PAwgaAdN6ANoCEdAqfkNCLMs6XV9lChoBkdAim+vMjeKsWgHTegDaAhHQKn6ziMo+fR1fZQoaAZHQIv+Pwy6+WZoB03oA2gIR0Cp+0nEuQIVdX2UKGgGR0COI1TGYKIBaAdN6ANoCEdAqfvbviLl3nV9lChoBkdAjQkBltj0+WgHTegDaAhHQKoGb7O3UhF1fZQoaAZHQIpbh8a4tpVoB03oA2gIR0CqCDHssxwidX2UKGgGR0CKU8TzND+jaAdN6ANoCEdAqgimRDCxeXV9lChoBkdAh2c9ZzPrwGgHTegDaAhHQKoJMzi0fHR1fZQoaAZHQIvq/6oESuhoB03oA2gIR0CqE519v0iAdX2UKGgGR0CNCLYDklu4aAdN6ANoCEdAqhVL+YMOPXV9lChoBkdAiy5RRuTA32gHTegDaAhHQKoVyHyEtd11fZQoaAZHQJBmLEk0JnhoB03oA2gIR0CqFlgEEC/5dX2UKGgGR0CO39IKc/dJaAdN6ANoCEdAqiDVUKiPAHV9lChoBkdAiwqL7oB7u2gHTegDaAhHQKoimIE8q4J1fZQoaAZHQIn74wIt16poB03oA2gIR0CqIxsPJ7swdX2UKGgGR0CG9pzOHFglaAdN6ANoCEdAqiOrwpe/pXV9lChoBkdAh7TbxEv0y2gHTegDaAhHQKouKMWoFV11fZQoaAZHQIQxFTzd1uBoB03oA2gIR0CqL9vo3aSLdX2UKGgGR0CDsZOLzf78aAdN6ANoCEdAqjBbilzltHV9lChoBkdAjmjtsWO6umgHTegDaAhHQKow6OU+s5p1fZQoaAZHQIW1G6unuRdoB03oA2gIR0CqO4jMvAXVdX2UKGgGR0CHVMKhtcfOaAdN6ANoCEdAqj1MqQRwqHV9lChoBkdAhtaRPGhmG2gHTegDaAhHQKo9x+7UXpJ1fZQoaAZHQIj4p7AtWdVoB03oA2gIR0CqPlgsCkoGdX2UKGgGR0CIIoGVRk3CaAdN6ANoCEdAqkjDRjSXt3V9lChoBkdAhMZwljVhC2gHTegDaAhHQKpKdVinYQJ1fZQoaAZHQIhG/jyWiURoB03oA2gIR0CqSu/CqIacdX2UKGgGR0CGrOPxx1gZaAdN6ANoCEdAqkt++RHPNXV9lChoBkdAhj7dHDrJKmgHTegDaAhHQKpV+w8nuzB1fZQoaAZHQJF1TYwqRU5oB03oA2gIR0CqV6x3NcGDdX2UKGgGR0CMgn7BwdbQaAdN6ANoCEdAqlgpgRbr1XV9lChoBkdAi8PUxM36ymgHTegDaAhHQKpYtlDneSB1fZQoaAZHQIhQVxjriVBoB03oA2gIR0CqZK3uNPxhdX2UKGgGR0CF2t6+FlCkaAdN6ANoCEdAqmZznV5KOHV9lChoBkdAjkMPxpcopmgHTegDaAhHQKpm6pb2USt1fZQoaAZHQIH8EYCQtBhoB03oA2gIR0CqZ4BB7eEadX2UKGgGR0CPu8aEzwc6aAdN6ANoCEdAqnHwhyKekHV9lChoBkdAjaP3Td+G5GgHTegDaAhHQKpzqn0kGA11fZQoaAZHQJAcvwBo24xoB03oA2gIR0CqdCNiQT24dX2UKGgGR0CRHgVJtix3aAdN6ANoCEdAqnSs4xUNrnV9lChoBkdAkXYS9ytFKGgHTegDaAhHQKp/Jwe/5+J1fZQoaAZHQIfAOll9SdhoB03oA2gIR0CqgNkLQXyidX2UKGgGR0CRsO2/zreJaAdN6ANoCEdAqoFUL6UJOXV9lChoBkdAkOOB4ptrK2gHTegDaAhHQKqB51mJ3xF1fZQoaAZHQI4iGTPjXFtoB03oA2gIR0CqjERrrPdEdX2UKGgGR0CQJGYr8R+SaAdN6ANoCEdAqo3z3IuGsXV9lChoBkdAjQUaMBIWg2gHTegDaAhHQKqObWn0kGB1fZQoaAZHQJGyknVoYeloB03oA2gIR0Cqjvr8JlasdX2UKGgGR0CQhcK+BYmtaAdN6ANoCEdAqpl7/ACW/3V9lChoBkdAkAAZwCKaX2gHTegDaAhHQKqbLGKhtch1fZQoaAZHQJBKrv/io89oB03oA2gIR0Cqm6efqX4TdX2UKGgGR0CSFmZeRgZ1aAdN6ANoCEdAqpw5+vyLAHV9lChoBkdAkaijOTq0MWgHTegDaAhHQKqmxpkf9xZ1fZQoaAZHQJI92BwuM/BoB03oA2gIR0CqqII1LrX2dX2UKGgGR0CRh7sk6cRUaAdN6ANoCEdAqqj4USIxg3V9lChoBkdAkN8EmY0EYGgHTegDaAhHQKqpiPRRdhR1fZQoaAZHQJHV3y08eS1oB03oA2gIR0CqtA2MS9M9dX2UKGgGR0CRzup5/smfaAdN6ANoCEdAqrW63LFGX3V9lChoBkdAkj6Y4Ia99WgHTegDaAhHQKq2M2UjcEh1fZQoaAZHQIUy7utwJgNoB03oA2gIR0CqtsKDCgscdX2UKGgGR0CLYdFYuCf6aAdN6ANoCEdAqsEoLApKBnV9lChoBkdAiqvIh6jWTWgHTegDaAhHQKrC4CSRr8B1fZQoaAZHQIiiydWhh6VoB03oA2gIR0Cqw11ZDArQdX2UKGgGR0CNx43o9s7/aAdN6ANoCEdAqsPuzSkTH3V9lChoBkdAiy98hkiD/WgHTegDaAhHQKrOeMhHLA51fZQoaAZHQJAdXz4DcM5oB03oA2gIR0Cq0CQaJhvzdX2UKGgGR0CRgXrZ8KG+aAdN6ANoCEdAqtCd9ph4MXV9lChoBkdAjSt/GMn7YWgHTegDaAhHQKrRKxYaHbh1fZQoaAZHQJBOuS7oSthoB03oA2gIR0Cq26CE6DGtdX2UKGgGR0CNUDHCGetkaAdN6ANoCEdAqt2WICU5dXV9lChoBkdAj0vohpxm02gHTegDaAhHQKreDZJTVDt1fZQoaAZHQI2AI3Lmp2loB03oA2gIR0Cq3pmnwXqJdX2UKGgGR0CPkYVmBe5XaAdN6ANoCEdAqukIvDgqE3V9lChoBkdAjeHHh0hePmgHTegDaAhHQKrqveC04R51fZQoaAZHQJDkIkleF+NoB03oA2gIR0Cq6zlsP8Q7dX2UKGgGR0CQkx7ZnL7oaAdN6ANoCEdAquvK0IC2dHV9lChoBkdAjubjB2wFDGgHTegDaAhHQKr2aKZUkv91fZQoaAZHQI/4o+fRNRFoB03oA2gIR0Cq+BUtI066dX2UKGgGR0CLKBQAuIykaAdN6ANoCEdAqviQZVGTcXV9lChoBkdAivONfgJkXmgHTegDaAhHQKr5HNHH3lF1fZQoaAZHQIp172alUIdoB03oA2gIR0CrBBOD8LrpdX2UKGgGR0CNNK2Kl54XaAdN6ANoCEdAqwXN/e+EiHV9lChoBkdAidqNAs052mgHTegDaAhHQKsGSd0aIep1fZQoaAZHQI76QPuogmtoB03oA2gIR0CrBtxYRujzdX2UKGgGR0CJLp5OafBfaAdN6ANoCEdAqxEsC7sfJXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 63326, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (908 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 822.4203915828257, "std_reward": 48.823754909047125, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-08-31T13:31:59.547936"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f96663a22354f739a5ad9768b045894686f8384803b2934225e72e813f52ed5
3
+ size 2763