2rtl3's picture
update model card README.md
f8313b9
metadata
language:
  - mn
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: mn-twhin-bert-named-entity
    results: []

mn-twhin-bert-named-entity

This model is a fine-tuned version of Twitter/twhin-bert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1591
  • Precision: 0.9068
  • Recall: 0.9199
  • F1: 0.9133
  • Accuracy: 0.9728

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1901 1.0 477 0.1052 0.8528 0.8872 0.8697 0.9666
0.0853 2.0 954 0.1220 0.8731 0.8963 0.8845 0.9666
0.0577 3.0 1431 0.1109 0.8889 0.9082 0.8984 0.9696
0.0396 4.0 1908 0.1172 0.9006 0.9175 0.9090 0.9724
0.0287 5.0 2385 0.1314 0.9002 0.9169 0.9085 0.9720
0.0213 6.0 2862 0.1363 0.9051 0.9181 0.9116 0.9720
0.0158 7.0 3339 0.1437 0.9114 0.9221 0.9167 0.9732
0.011 8.0 3816 0.1517 0.9091 0.9202 0.9146 0.9726
0.0077 9.0 4293 0.1570 0.9070 0.9199 0.9134 0.9728
0.0059 10.0 4770 0.1591 0.9068 0.9199 0.9133 0.9728

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.0.0+cu118
  • Datasets 2.12.0
  • Tokenizers 0.13.3