Upload sdxl_lora_elemental_tune.py
Browse files- sdxl_lora_elemental_tune.py +167 -158
sdxl_lora_elemental_tune.py
CHANGED
|
@@ -7,178 +7,187 @@ from safetensors import safe_open
|
|
| 7 |
import math
|
| 8 |
|
| 9 |
def parse_key(key):
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
|
| 28 |
def extract_lora_hierarchy(lora_tensors, mode="extract"):
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
|
| 83 |
|
| 84 |
def adjust_lora_weights(lora_path, toml_path, output_path, multiplier=1.0, remove_zero_weight_keys=True):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
|
| 138 |
def write_toml(lora_hierarchy, output_path):
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
|
| 145 |
|
| 146 |
def main():
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
|
| 183 |
if __name__ == "__main__":
|
| 184 |
-
|
|
|
|
| 7 |
import math
|
| 8 |
|
| 9 |
def parse_key(key):
|
| 10 |
+
match = re.match(r"lora_unet_(input|output|up|down)_blocks_(\d+(?:_\d+)?)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
|
| 11 |
+
if match:
|
| 12 |
+
return "unet", match.group(1) + "_blocks", match.group(2), match.group(3)
|
| 13 |
|
| 14 |
+
match = re.match(r"lora_unet_(mid_block)_(resnets|attentions)_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
|
| 15 |
+
if match:
|
| 16 |
+
return "unet", match.group(1), f"{match.group(2)}_{match.group(3)}", match.group(4)
|
| 17 |
|
| 18 |
+
match = re.match(r"lora_unet_(middle_block)_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
|
| 19 |
+
if match:
|
| 20 |
+
return "unet", match.group(1), match.group(2), match.group(3)
|
| 21 |
|
| 22 |
+
match = re.match(r"lora_te\d+_text_model_encoder_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
|
| 23 |
+
if match:
|
| 24 |
+
return "text_encoder", "encoder_layers", match.group(1).split("_")[0], "_".join(match.group(1).split("_")[1:])
|
| 25 |
|
| 26 |
+
return None, None, None, None
|
| 27 |
|
| 28 |
def extract_lora_hierarchy(lora_tensors, mode="extract"):
|
| 29 |
+
lora_hierarchy = {}
|
| 30 |
+
lora_key_groups = {"unet": {}, "text_encoder": {}} if mode == "adjust" else None
|
| 31 |
+
|
| 32 |
+
for key in lora_tensors:
|
| 33 |
+
if key.startswith("lora_unet_"):
|
| 34 |
+
model_type, block_type, block_num, layer_key = parse_key(key)
|
| 35 |
+
|
| 36 |
+
if model_type and block_type and layer_key:
|
| 37 |
+
parts = layer_key.split("_")
|
| 38 |
+
if "transformer_blocks" in layer_key:
|
| 39 |
+
grouped_key = "_".join(parts[:3] + [parts[3] if len(parts) > 5 else ""])
|
| 40 |
+
elif "attentions" in layer_key:
|
| 41 |
+
grouped_key = "_".join(parts[:3] + [parts[3] if len(parts) > 5 else ""])
|
| 42 |
+
elif "resnets" in layer_key:
|
| 43 |
+
grouped_key = "_".join(parts[:3])
|
| 44 |
+
else:
|
| 45 |
+
grouped_key = layer_key
|
| 46 |
+
|
| 47 |
+
if model_type not in lora_hierarchy:
|
| 48 |
+
lora_hierarchy[model_type] = {}
|
| 49 |
+
if block_type not in lora_hierarchy[model_type]:
|
| 50 |
+
lora_hierarchy[model_type][block_type] = {}
|
| 51 |
+
if block_num not in lora_hierarchy[model_type][block_type]:
|
| 52 |
+
lora_hierarchy[model_type][block_type][block_num] = {}
|
| 53 |
+
lora_hierarchy[model_type][block_type][block_num][grouped_key] = 1.0
|
| 54 |
+
|
| 55 |
+
if mode == "adjust":
|
| 56 |
+
group_key = f"..unet_{block_type}_{block_num}_{grouped_key}"
|
| 57 |
+
if group_key not in lora_key_groups["unet"]:
|
| 58 |
+
lora_key_groups["unet"][group_key] = []
|
| 59 |
+
lora_key_groups["unet"][group_key].append(key)
|
| 60 |
+
|
| 61 |
+
elif key.startswith("lora_te"):
|
| 62 |
+
match = re.match(r"(lora_te\d+)_text_model_encoder_layers_(\d+)_(.+)\.(?:alpha|lora_(?:down|up)\.weight)", key)
|
| 63 |
+
if match:
|
| 64 |
+
model_section = match.group(1)
|
| 65 |
+
block_type = "encoder"
|
| 66 |
+
block_num = match.group(2)
|
| 67 |
+
layer_key = match.group(3)
|
| 68 |
+
|
| 69 |
+
grouped_key = f"layers_{block_num}__{layer_key}"
|
| 70 |
+
|
| 71 |
+
if model_section not in lora_hierarchy:
|
| 72 |
+
lora_hierarchy[model_section] = {}
|
| 73 |
+
if block_type not in lora_hierarchy[model_section]:
|
| 74 |
+
lora_hierarchy[model_section][block_type] = {}
|
| 75 |
+
lora_hierarchy[model_section][block_type][grouped_key] = 1.0
|
| 76 |
+
|
| 77 |
+
if mode == "adjust":
|
| 78 |
+
group_key = f"..{model_section}_{block_num}_{layer_key}"
|
| 79 |
+
lora_key_groups["text_encoder"][group_key] = [key]
|
| 80 |
+
|
| 81 |
+
return lora_hierarchy if mode == "extract" else lora_key_groups
|
| 82 |
|
| 83 |
|
| 84 |
def adjust_lora_weights(lora_path, toml_path, output_path, multiplier=1.0, remove_zero_weight_keys=True):
|
| 85 |
+
try:
|
| 86 |
+
lora_tensors = load_file(lora_path)
|
| 87 |
+
with safe_open(lora_path, framework="pt") as f:
|
| 88 |
+
metadata = f.metadata()
|
| 89 |
+
except Exception as e:
|
| 90 |
+
raise Exception(f"Error loading LoRA model: {e}")
|
| 91 |
+
|
| 92 |
+
try:
|
| 93 |
+
with open(toml_path, "r") as f:
|
| 94 |
+
lora_config = toml.load(f)
|
| 95 |
+
except Exception as e:
|
| 96 |
+
raise Exception(f"Error loading TOML file: {e}")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
lora_key_groups = extract_lora_hierarchy(lora_tensors, mode="adjust")
|
| 100 |
+
adjusted_tensors = {}
|
| 101 |
+
|
| 102 |
+
for model_section, model_config in lora_config.items():
|
| 103 |
+
if model_section.startswith("lora_te"):
|
| 104 |
+
for block_type, layers in model_config.items():
|
| 105 |
+
for layer_key, weight in layers.items():
|
| 106 |
+
block_num, layer_name = layer_key.replace("layers_", "").split("__")
|
| 107 |
+
group_key = f"..{model_section}_{block_num}_{layer_name}"
|
| 108 |
+
if group_key in lora_key_groups["text_encoder"]:
|
| 109 |
+
final_weight = weight * multiplier
|
| 110 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 111 |
+
for target_key in lora_key_groups["text_encoder"][group_key]:
|
| 112 |
+
if target_key.endswith(".alpha"):
|
| 113 |
+
final_weight = weight * multiplier
|
| 114 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 115 |
+
adjusted_tensors[target_key] = lora_tensors[target_key]
|
| 116 |
+
else:
|
| 117 |
+
final_weight = weight * multiplier
|
| 118 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 119 |
+
adjusted_tensors[target_key] = lora_tensors[target_key] * math.sqrt(final_weight)
|
| 120 |
+
|
| 121 |
+
else: # unet
|
| 122 |
+
for block_type, block_nums in model_config.items():
|
| 123 |
+
for block_num, layer_keys in block_nums.items():
|
| 124 |
+
for grouped_key, weight in layer_keys.items():
|
| 125 |
+
group_key = f"..unet_{block_type}_{block_num}_{grouped_key}"
|
| 126 |
+
if group_key in lora_key_groups["unet"]:
|
| 127 |
+
final_weight = weight * multiplier
|
| 128 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 129 |
+
for target_key in lora_key_groups["unet"][group_key]:
|
| 130 |
+
if target_key.endswith(".alpha"):
|
| 131 |
+
final_weight = weight * multiplier
|
| 132 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 133 |
+
adjusted_tensors[target_key] = lora_tensors[target_key]
|
| 134 |
+
else:
|
| 135 |
+
final_weight = weight * multiplier
|
| 136 |
+
if not remove_zero_weight_keys or final_weight != 0.0:
|
| 137 |
+
adjusted_tensors[target_key] = lora_tensors[target_key] * math.sqrt(final_weight)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
try:
|
| 142 |
+
save_file(adjusted_tensors, output_path, metadata)
|
| 143 |
+
except Exception as e:
|
| 144 |
+
raise Exception(f"Error saving adjusted model: {e}")
|
| 145 |
|
| 146 |
|
| 147 |
def write_toml(lora_hierarchy, output_path):
|
| 148 |
+
try:
|
| 149 |
+
with open(output_path, "w") as f:
|
| 150 |
+
toml.dump(lora_hierarchy, f)
|
| 151 |
+
except Exception as e:
|
| 152 |
+
raise Exception(f"Error writing TOML file: {e}")
|
| 153 |
|
| 154 |
|
| 155 |
def main():
|
| 156 |
+
parser = argparse.ArgumentParser(description="Extract or adjust LoRA weights based on a TOML config.")
|
| 157 |
+
subparsers = parser.add_subparsers(dest="mode", help="Choose mode: 'extract' or 'adjust'")
|
| 158 |
+
|
| 159 |
+
# Extract mode
|
| 160 |
+
parser_extract = subparsers.add_parser("extract", help="Extract LoRA hierarchy to a TOML file")
|
| 161 |
+
parser_extract.add_argument("--lora_path", required=True, help="Path to the LoRA safetensors file")
|
| 162 |
+
parser_extract.add_argument("--output_path", required=True, help="Path to the output TOML file")
|
| 163 |
+
|
| 164 |
+
# Adjust mode
|
| 165 |
+
parser_adjust = subparsers.add_parser("adjust", help="Adjust LoRA weights based on a TOML config.")
|
| 166 |
+
parser_adjust.add_argument("--lora_path", required=True, help="Path to the LoRA safetensors file")
|
| 167 |
+
parser_adjust.add_argument("--toml_path", required=True, help="Path to the TOML config file")
|
| 168 |
+
parser_adjust.add_argument("--output_path", required=True, help="Path to the output safetensors file")
|
| 169 |
+
parser_adjust.add_argument("--multiplier", type=float, default=1.0, help="Global multiplier for the LoRA weights")
|
| 170 |
+
parser_adjust.add_argument("--remove_zero_weight_keys", action="store_true",
|
| 171 |
+
help="Remove keys with resulting weight of 0. Useful for reducing file size.")
|
| 172 |
+
|
| 173 |
+
args = parser.parse_args()
|
| 174 |
+
|
| 175 |
+
try:
|
| 176 |
+
if args.mode == "extract":
|
| 177 |
+
lora_tensors = load_file(args.lora_path)
|
| 178 |
+
lora_hierarchy = extract_lora_hierarchy(lora_tensors)
|
| 179 |
+
write_toml(lora_hierarchy, args.output_path)
|
| 180 |
+
print(f"Successfully extracted LoRA hierarchy to {args.output_path}")
|
| 181 |
+
|
| 182 |
+
elif args.mode == "adjust":
|
| 183 |
+
adjust_lora_weights(args.lora_path, args.toml_path, args.output_path, args.multiplier, args.remove_zero_weight_keys)
|
| 184 |
+
print(f"Successfully adjusted LoRA weights and saved to {args.output_path}")
|
| 185 |
+
|
| 186 |
+
else:
|
| 187 |
+
parser.print_help()
|
| 188 |
+
|
| 189 |
+
except Exception as e:
|
| 190 |
+
print(f"An error occurred: {e}")
|
| 191 |
|
| 192 |
if __name__ == "__main__":
|
| 193 |
+
main()
|