File size: 4,262 Bytes
f3fbb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb31ae
f3fbb51
 
 
 
 
 
 
 
 
fcb31ae
 
f3fbb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcb31ae
f3fbb51
 
 
fcb31ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3fbb51
 
 
 
 
 
fcb31ae
f3fbb51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
license: apache-2.0
base_model: microsoft/beit-base-patch16-224-pt22k-ft22k
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: finetuned-FER2013
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7011494252873564
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuned-FER2013

This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8313
- Accuracy: 0.7011

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7483        | 1.0   | 202  | 1.7005          | 0.3386   |
| 1.4419        | 2.0   | 404  | 1.3213          | 0.5315   |
| 1.2917        | 3.0   | 606  | 1.1559          | 0.5785   |
| 1.2437        | 4.0   | 808  | 1.0729          | 0.6162   |
| 1.1635        | 5.0   | 1010 | 1.0161          | 0.6311   |
| 1.1087        | 6.0   | 1212 | 0.9862          | 0.6465   |
| 1.0964        | 7.0   | 1414 | 0.9901          | 0.6440   |
| 1.0895        | 8.0   | 1616 | 0.9410          | 0.6555   |
| 1.0384        | 9.0   | 1818 | 0.9221          | 0.6628   |
| 1.0333        | 10.0  | 2020 | 0.9142          | 0.6681   |
| 1.0016        | 11.0  | 2222 | 0.9081          | 0.6681   |
| 0.9503        | 12.0  | 2424 | 0.9013          | 0.6712   |
| 0.9804        | 13.0  | 2626 | 0.8937          | 0.6771   |
| 0.9712        | 14.0  | 2828 | 0.8809          | 0.6830   |
| 1.0151        | 15.0  | 3030 | 0.8704          | 0.6855   |
| 0.9739        | 16.0  | 3232 | 0.8886          | 0.6775   |
| 0.9267        | 17.0  | 3434 | 0.8653          | 0.6855   |
| 0.9428        | 18.0  | 3636 | 0.8633          | 0.6848   |
| 0.9654        | 19.0  | 3838 | 0.8697          | 0.6809   |
| 0.9256        | 20.0  | 4040 | 0.8559          | 0.6855   |
| 0.9345        | 21.0  | 4242 | 0.8533          | 0.6883   |
| 0.9479        | 22.0  | 4444 | 0.8548          | 0.6907   |
| 0.8829        | 23.0  | 4646 | 0.8461          | 0.6851   |
| 0.8999        | 24.0  | 4848 | 0.8399          | 0.6883   |
| 0.9047        | 25.0  | 5050 | 0.8403          | 0.6973   |
| 0.9415        | 26.0  | 5252 | 0.8437          | 0.6952   |
| 0.937         | 27.0  | 5454 | 0.8393          | 0.6931   |
| 0.8692        | 28.0  | 5656 | 0.8331          | 0.6977   |
| 0.9396        | 29.0  | 5858 | 0.8418          | 0.6973   |
| 0.8712        | 30.0  | 6060 | 0.8392          | 0.6921   |
| 0.9426        | 31.0  | 6262 | 0.8324          | 0.7011   |
| 0.884         | 32.0  | 6464 | 0.8325          | 0.6959   |
| 0.8433        | 33.0  | 6666 | 0.8300          | 0.6987   |
| 0.8869        | 34.0  | 6868 | 0.8328          | 0.6963   |
| 0.89          | 35.0  | 7070 | 0.8324          | 0.6973   |
| 0.8639        | 36.0  | 7272 | 0.8317          | 0.6956   |
| 0.8844        | 37.0  | 7474 | 0.8315          | 0.6970   |
| 0.8621        | 38.0  | 7676 | 0.8334          | 0.6991   |
| 0.8942        | 39.0  | 7878 | 0.8350          | 0.6998   |
| 0.8609        | 40.0  | 8080 | 0.8313          | 0.7011   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0