File size: 5,463 Bytes
73c6851
25227b5
 
dd8ea72
73c6851
 
 
 
 
 
b99cc5c
73c6851
 
 
 
 
 
 
 
 
25227b5
 
 
 
 
73c6851
 
 
 
 
25227b5
73c6851
 
 
 
 
25227b5
73c6851
25227b5
 
 
 
73c6851
 
25227b5
 
 
c71df51
25227b5
73c6851
25227b5
 
 
 
 
 
 
 
 
 
 
 
 
73c6851
25227b5
 
73c6851
25227b5
73c6851
25227b5
73c6851
25227b5
73c6851
fd85352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73c6851
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
language:
- ko
library_name: transformers
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->

readme coming soon

## Model Details

### Model Description

<!-- Provide a longer summary of what this model is. -->

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

- **Developed by:** 4n3mone (YongSang Yoo)
- **Model type:** chatglm
- **Language(s) (NLP):** Korean
- **License:** glm-4
- **Finetuned from model [optional]:** THUDM/glm-4-9b-chat

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** THUDM/glm-4-9b-chat
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]



## How to Get Started with the Model

Use the code below to get started with the model.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams


# GLM-4-9B-Chat
# If you encounter OOM (Out of Memory) issues, it is recommended to reduce max_model_len or increase tp_size.
max_model_len, tp_size = 131072, 1
model_name = "4n3mone/glm-4-ko-9b-chat"
prompt = [{"role": "user", "content": "피카츄랑 아구몬 중에서 누가 더 귀여워?"}]

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
    model=model_name,
    tensor_parallel_size=tp_size,
    max_model_len=max_model_len,
    trust_remote_code=True,
    enforce_eager=True,
    # If you encounter OOM (Out of Memory) issues, it is recommended to enable the following parameters.
    # enable_chunked_prefill=True,
    # max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)

inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

model.generate(prompt)

```

## logicor benchmark(1-shot)
| Category | Single turn | Multi turn |
|---|---|---|
| 추론(Reasoning) | 6.00 | 5.57 |
| 수학(Math) | 5.71 | 3.00 |
| 코딩(Coding) | 6.00 | 5.71 |
| 이해(Understanding) | 7.71 | 8.71 |
| 글쓰기(Writing) | 8.86 | 7.57 |
| 문법(Grammar) | 2.86 | 3.86 |

| Category | Score |
|---|---|
| Single turn | 6.19 |
| Multi turn | 5.74 |
| Overall | 5.96 |

## Training Details

### Training Data

<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

[More Information Needed]

### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]

## Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]

## Technical Specifications [optional]

### Model Architecture and Objective

[More Information Needed]

### Compute Infrastructure

[More Information Needed]

#### Hardware

[More Information Needed]

#### Software

[More Information Needed]

## Citation [optional]

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

[More Information Needed]

**APA:**

[More Information Needed]

## Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

[More Information Needed]

## More Information [optional]

[More Information Needed]

## Model Card Authors [optional]

[More Information Needed]

## Model Card Contact

[More Information Needed]