File size: 5,463 Bytes
73c6851 25227b5 dd8ea72 73c6851 b99cc5c 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 c71df51 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 25227b5 73c6851 fd85352 73c6851 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
---
language:
- ko
library_name: transformers
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
readme coming soon
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** 4n3mone (YongSang Yoo)
- **Model type:** chatglm
- **Language(s) (NLP):** Korean
- **License:** glm-4
- **Finetuned from model [optional]:** THUDM/glm-4-9b-chat
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** THUDM/glm-4-9b-chat
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# GLM-4-9B-Chat
# If you encounter OOM (Out of Memory) issues, it is recommended to reduce max_model_len or increase tp_size.
max_model_len, tp_size = 131072, 1
model_name = "4n3mone/glm-4-ko-9b-chat"
prompt = [{"role": "user", "content": "피카츄랑 아구몬 중에서 누가 더 귀여워?"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
model=model_name,
tensor_parallel_size=tp_size,
max_model_len=max_model_len,
trust_remote_code=True,
enforce_eager=True,
# If you encounter OOM (Out of Memory) issues, it is recommended to enable the following parameters.
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
model.generate(prompt)
```
## logicor benchmark(1-shot)
| Category | Single turn | Multi turn |
|---|---|---|
| 추론(Reasoning) | 6.00 | 5.57 |
| 수학(Math) | 5.71 | 3.00 |
| 코딩(Coding) | 6.00 | 5.71 |
| 이해(Understanding) | 7.71 | 8.71 |
| 글쓰기(Writing) | 8.86 | 7.57 |
| 문법(Grammar) | 2.86 | 3.86 |
| Category | Score |
|---|---|
| Single turn | 6.19 |
| Multi turn | 5.74 |
| Overall | 5.96 |
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] |