Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- tt
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- whisper-event
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_11_0
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Tatar - Kirill Milintsevich
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice 11.0
|
20 |
+
type: mozilla-foundation/common_voice_11_0
|
21 |
+
args: 'Config: tt'
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 29.091166477916197
|
26 |
+
---
|
27 |
+
|
28 |
+
# Whisper Small Tatar - Kirill Milintsevich
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 0.4745
|
33 |
+
- Wer: 29.1407
|
34 |
+
|
35 |
+
## Model description
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Intended uses & limitations
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training and evaluation data
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 1e-05
|
53 |
+
- train_batch_size: 64
|
54 |
+
- eval_batch_size: 8
|
55 |
+
- seed: 42
|
56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
57 |
+
- lr_scheduler_type: linear
|
58 |
+
- lr_scheduler_warmup_steps: 500
|
59 |
+
- training_steps: 5000
|
60 |
+
- mixed_precision_training: Native AMP
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|
|
66 |
+
| 0.0415 | 4.98 | 1000 | 0.3252 | 29.9512 |
|
67 |
+
| 0.0041 | 9.95 | 2000 | 0.3982 | 29.4805 |
|
68 |
+
| 0.0007 | 14.93 | 3000 | 0.4457 | 29.1513 |
|
69 |
+
| 0.0003 | 19.9 | 4000 | 0.4665 | 29.0912 |
|
70 |
+
| 0.0002 | 24.88 | 5000 | 0.4745 | 29.1407 |
|