{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x799ff3c456c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x799ff3c45750>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x799ff3c457e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x799ff3c45870>", "_build": "<function ActorCriticPolicy._build at 0x799ff3c45900>", "forward": "<function ActorCriticPolicy.forward at 0x799ff3c45990>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x799ff3c45a20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x799ff3c45ab0>", "_predict": "<function ActorCriticPolicy._predict at 0x799ff3c45b40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x799ff3c45bd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x799ff3c45c60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x799ff3c45cf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x799ff3be3fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709668438382100013, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE2DG717dKS4teCiu7w5mLk3EZC7ewvFOgAAgD8AAIA/zeGNPaEEvj9K1dg+8J+RO1L48DyJiIk9AAAAAAAAAAAz0Bg+trA4vPDiGjzBJp662UWZvUIZgrsAAIA/AACAPxDDjj7i/K4+FNhLvg8s8b41TYA+QUcYvgAAAAAAAAAAcxXWvfgp4T0hmps+HD/dvmnzqD0p07E9AAAAAAAAAABmTCQ8CDCCvFOJEL3OpkA9bcqFvaqcuTsAAIA/AACAPwCIqLwpPEG6Q1SDtp74pzAa86a7IsKYNQAAgD8AAIA/5sVzPckpmD/89gs+zlhOv+SJwT29pXs8AAAAAAAAAADNQKC9w+oZPZdAGD7TiYC+oQamPUrAOTwAAAAAAAAAAHMQpb0UHvK67g8/PjKiLr0aE5O9dmqLPgAAAAAAAAAAZs+SPI8qCrpTyU6zlZ0CrOy76DpUN8AzAACAPwAAgD+gNXu+GFOsPjnVBz8XOgW/fZMlvBockD4AAAAAAAAAAI09271Ex78+3s4RvQy4I78ND6m9IhMGPQAAAAAAAAAApsm5PdQ2mj+wCSY/sE9dvyrnKT1O/H0+AAAAAAAAAAAmpwo+7su4P2g3Lz922ya+ePuiPSR2Nz4AAAAAAAAAAAB0K774JIo+Vjk9PgNm0r47SIK9k61uPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHH/OUUwi7mMAWyUS7iMAXSUR0C4Te3Mpw0gdX2UKGgGR0BzY1QbdadMaAdLtGgIR0C4TfFpKzzFdX2UKGgGR0ByIOfdyksSaAdLimgIR0C4TfqnNxEOdX2UKGgGR0BxsbeDWbw0aAdLj2gIR0C4TiCTyJ9BdX2UKGgGR0Bx8gj0L+glaAdLqmgIR0C4Tih/7SApdX2UKGgGR0ByCo0pEx7BaAdLnWgIR0C4TkT+aScLdX2UKGgGR0BzswLJCBwuaAdLqmgIR0C4TmB1s+FDdX2UKGgGR0Bx5cllbu+iaAdLwGgIR0C4Tmufh/AkdX2UKGgGR0Bv0bOzIFNdaAdLn2gIR0C4Tn1uejEfdX2UKGgGR0ByBBpblijMaAdLw2gIR0C4TpGSZBszdX2UKGgGR0Bxw6c4HX2/aAdLp2gIR0C4Tp40l7dBdX2UKGgGR0Byh2xVyWAxaAdLxWgIR0C4TqqdpZfVdX2UKGgGR0B0FTS2H+IeaAdLz2gIR0C4TrRsl9jPdX2UKGgGR0BzOfxQSBbwaAdL1mgIR0C4TtBpYcNpdX2UKGgGR0Bymbwc5sCUaAdLr2gIR0C4TyekUKzBdX2UKGgGR0ByzCSzPa+OaAdLx2gIR0C4TzCMkyDadX2UKGgGR0BykMAcT8HfaAdLv2gIR0C4T1kI1LrYdX2UKGgGR0Bx0TdSEUTMaAdLzmgIR0C4T251JUYLdX2UKGgGR0B0BkPNFBppaAdL7mgIR0C4T30RBeHBdX2UKGgGR0BxPjjQzDXOaAdLiWgIR0C4T5x0p3HJdX2UKGgGR0BxG0rJ8v25aAdLpWgIR0C4T6l3hXKbdX2UKGgGR0BzTdY/3WWhaAdLuGgIR0C4T7ORHPNWdX2UKGgGR0Bx0LILgGbDaAdL1WgIR0C4T8rbDdgwdX2UKGgGR0Byfj80k4WDaAdL1WgIR0C4T9YE4ecQdX2UKGgGR0By5U9ic5KfaAdLpWgIR0C4T+kwBYFJdX2UKGgGR0BzjCb+cYqHaAdLxWgIR0C4UAV2aDwpdX2UKGgGR0Bz+3cWTHKfaAdLz2gIR0C4UAbxy4nXdX2UKGgGR0ByHcXenAIqaAdLemgIR0C4UCq0x/NJdX2UKGgGR0BzhyXWvr4WaAdLwmgIR0C4UDXfEXLvdX2UKGgGR0ByYYH+qBEsaAdLymgIR0C4UDkgntv5dX2UKGgGR0ByWTEKmbb2aAdLyWgIR0C4UGHZPEbYdX2UKGgGR0BwE5AnlXA/aAdLoWgIR0C4UJ6cI7eVdX2UKGgGR0Bw/yoaUA1faAdLu2gIR0C4UKKJhvzfdX2UKGgGR0Bye9DPWxyGaAdLhWgIR0C4UMFO45LidX2UKGgGR0BH3ZbILgGbaAdLV2gIR0C4UMyAhB7edX2UKGgGR0BxrsdeY2KmaAdLp2gIR0C4UNE4WDYidX2UKGgGR0BywM+mm+CcaAdLuGgIR0C4UNOI/JNkdX2UKGgGR0Bx+/QC0WuYaAdLxmgIR0C4UODOxB3SdX2UKGgGR0Byt3HKfWc0aAdLgWgIR0C4UOUQ5FPSdX2UKGgGR0BuSASpR4yHaAdLmGgIR0C4UO0OmR/3dX2UKGgGR0ByEgIfKZDzaAdLuGgIR0C4UO6asp5NdX2UKGgGR0BzqsxASnLraAdLwmgIR0C4UQInfEXMdX2UKGgGR0By3pdRiw0PaAdLuGgIR0C4USufI0ZWdX2UKGgGR0BzdVoGpuMuaAdL4mgIR0C4UUEt7KJVdX2UKGgGR0BxbkmXw9aEaAdLtmgIR0C4UUzV+Zw5dX2UKGgGR0ByQHfO2RaHaAdLjWgIR0C4UVmL9/BndX2UKGgGR0Bx/ENG3F1kaAdLxGgIR0C4UXwU1yeadX2UKGgGR0B0S+6ErXlKaAdL52gIR0C4UYYXoC+2dX2UKGgGR0BvK07MgU1yaAdLjGgIR0C4UYvG+9J0dX2UKGgGR0BxgkB3iaRZaAdLp2gIR0C4UaAJPZZkdX2UKGgGR0BwvhTP0I1MaAdLpWgIR0C4Uaj5oGpudX2UKGgGR0BygmW9lEqlaAdLyWgIR0C4Ua26TW5IdX2UKGgGR0BxDH974SHuaAdLqGgIR0C4Ub4REnb7dX2UKGgGR0BxBzttygf2aAdLtmgIR0C4UcVEZzgddX2UKGgGR0BylspBomG/aAdLv2gIR0C4UeFTrE9/dX2UKGgGR0BzS8VoHs1LaAdLvWgIR0C4UestTUAldX2UKGgGR0By+rDP4VRDaAdLrWgIR0C4UexBqsU7dX2UKGgGR0BwF9XMhX8waAdLiWgIR0C4Ufs/lhgFdX2UKGgGR0BySH3TNMXaaAdLz2gIR0C4UgTjNpuddX2UKGgGR0BvwBb2USqVaAdLn2gIR0C4UiMHv+fidX2UKGgGR0BziFRjz7MxaAdL1mgIR0C4UknTVlPKdX2UKGgGR0BzhyL876pHaAdL02gIR0C4UniLhrFgdX2UKGgGR0BxDSV7hNucaAdLvGgIR0C4UnoGpuMudX2UKGgGR0Bxp+65Gz8haAdLuWgIR0C4Un9w3o9tdX2UKGgGR0B0XDzQNTcZaAdLt2gIR0C4UoMw5/9YdX2UKGgGR0Bzx2XfIjnnaAdLqWgIR0C4Uo9ihFmWdX2UKGgGR0BxLTn+yZ8baAdLpmgIR0C4Up+TaCcxdX2UKGgGR0ByvNE1EVnFaAdLv2gIR0C4UrGoegctdX2UKGgGR0BxRa/0ulGgaAdLs2gIR0C4UrjLW7OFdX2UKGgGR0BwDHnEETxoaAdLlGgIR0C4UsSjUNKAdX2UKGgGR0Bw/gzP8hs7aAdLq2gIR0C4UtDeTFERdX2UKGgGR0BxdiPIXCTEaAdLoWgIR0C4Ut2EkB0ZdX2UKGgGR0ByxwxWT5fuaAdLvGgIR0C4UuewgTysdX2UKGgGR0Bx6YofCAMEaAdL0GgIR0C4Uv2UGFBZdX2UKGgGR0Bu+8oMKCxvaAdLkGgIR0C4Uz5GSZBtdX2UKGgGR0ByJJtVJcxCaAdL0WgIR0C4U0Q13t8edX2UKGgGR0BwMzhHbypaaAdLkmgIR0C4U0Usrd30dX2UKGgGR0Bx9A/MW43FaAdLwmgIR0C4U1em3vx6dX2UKGgGR0ByExAD7qIKaAdLmWgIR0C4U2O4G2TgdX2UKGgGR0BwndZRsMy8aAdLhWgIR0C4U2qbF0gbdX2UKGgGR0BzrTzMA3kxaAdLrWgIR0C4U3L7bcoIdX2UKGgGR0Bxh4eDFqBVaAdLsmgIR0C4U3WZ/kNndX2UKGgGR0BxLKBlMAWBaAdLlmgIR0C4U6RtxdY5dX2UKGgGR0Bx58zVMEidaAdLtGgIR0C4U7ZRXOnmdX2UKGgGR0BzPsnMMZxaaAdL22gIR0C4U9FqJuVHdX2UKGgGR0ByiV8F6iTMaAdLvWgIR0C4U+osqaw2dX2UKGgGR0Byo7dznzQNaAdL02gIR0C4U+8an753dX2UKGgGR0BzKh/Tb349aAdLsmgIR0C4U/u4Cp3pdX2UKGgGR0ByhHzZpSJkaAdLy2gIR0C4VAtld1MedX2UKGgGR0BwnoRHww0waAdLoWgIR0C4VCco6S1WdX2UKGgGR0BvEh7Z39rHaAdLlWgIR0C4VCrW3BpIdX2UKGgGR0BzMWqJdjXnaAdLrGgIR0C4VDiQPqcFdX2UKGgGR0BwPEcPvrnlaAdLk2gIR0C4VDwevIOpdX2UKGgGR0BxRI/Y8Md+aAdLtGgIR0C4VD7kn1FpdX2UKGgGR0Bx9F5qubI+aAdLkWgIR0C4VEO85CF9dX2UKGgGR0Bzbuw1R+BpaAdLomgIR0C4VFczQ/ordX2UKGgGR0BxiH+85CF9aAdLzWgIR0C4VH2+PBBSdX2UKGgGR0BxrpBAv+OwaAdLh2gIR0C4VKWALApKdX2UKGgGR0Bvath7VrhzaAdLnGgIR0C4VKtvGZNPdX2UKGgGR0BwRUFJQLuyaAdLsWgIR0C4VK4BBAv+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 620, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |