getting started with RL
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 256.27 +/- 16.51
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b705fcb8ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b705fcb8d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b705fcb8dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b705fcb8e50>", "_build": "<function ActorCriticPolicy._build at 0x7b705fcb8ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7b705fcb8f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b705fcb9000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b705fcb9090>", "_predict": "<function ActorCriticPolicy._predict at 0x7b705fcb9120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b705fcb91b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b705fcb9240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b705fcb92d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b705fe4f180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1709660301484065165, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABZnjT78wIE+GOvWvRSQmb7CMqk9Qv9WvQAAAAAAAAAAposDPnEvbrtj9nE6fOoKuIG827xYaKK5AAAAAAAAgD+zchm+j90yvO4+MDsReEQ5mXecPfBybroAAIA/AACAP9oIS76PYyk+MhXjPXufg74dpYg7d3asPAAAAAAAAAAAQEfEPUj5irpg1cA7eyvfN96tGztdu/41AAAAAAAAgD/zcKq9XtO5Php8uzpSPsS+Xq01vUKbiDwAAAAAAAAAAE0gBr5TKgQ/KJVuPTYM2L7pYyu9OzXdPAAAAAAAAAAA7eAtPuxApzwg/dQ4/OKbNyBDMT6VDiG4AACAPwAAgD9TIE0+4dSUur6QAr0tIFk7oRzHPiZQE70AAIA/AACAP5odnryjARc9htCGPf8UM74Iqwo9JhSAvQAAAAAAAAAAzSrRPRQ0nbriVI02LPSBMSpBV7n0QKa1AAAAAAAAgD9aLck9SFmRur9ZjTrxhXo1HvsYu6zuo7kAAAAAAACAPzqKOr5Z2HU+4O/MPVIea74WrGW9g67+OwAAAAAAAAAADYcBPu9Imz92uBc/SyQrv4rVDD7Ykp0+AAAAAAAAAADNnnY9HQxqPuF/szyc+Ia+wsHDPM3pPb0AAAAAAAAAAJowPr7sbN27gGm+OYrvSTdguFI9Et3kuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFZWBSUC7uMAWyUS/6MAXSUR0CiEqb7bcoIdX2UKGgGR0Bzw6jBVMmGaAdNBwFoCEdAohMGPmxMWXV9lChoBkdAcR4wob4rSWgHS9VoCEdAokl+bXpW3nV9lChoBkdAcVJavicXnGgHTR0BaAhHQKJJvrvb48F1fZQoaAZHQHEyaL876pJoB0vYaAhHQKJKZQfIS151fZQoaAZHQHHAFenhsIpoB0vAaAhHQKJKt4k/r0J1fZQoaAZHQG3D6fapPyloB00dAWgIR0CiStSrxRVIdX2UKGgGR0BkHbeIl+mWaAdN6ANoCEdAoks5X2dupHV9lChoBkdAcwqVVghKUWgHTQIBaAhHQKJLOg4ffXR1fZQoaAZHQHJuYIKMNttoB00KAWgIR0CiTGrWAf+1dX2UKGgGR0BwGkJv5xioaAdNIANoCEdAok0cGVzIWHV9lChoBkdAX8QfgaWHDmgHTegDaAhHQKJNsR+SbH91fZQoaAZHQF9RRv3rUspoB03oA2gIR0CiTd5LRKHxdX2UKGgGR0BBgR9G7SRbaAdLuGgIR0CiTq6+N96UdX2UKGgGR0Bk3Vtl7MPjaAdN6ANoCEdAolBEh5gPVnV9lChoBkdAcMGaIeo1k2gHS/FoCEdAolBwpjMFEHV9lChoBkdAcqDR51Ng0GgHS+1oCEdAolDMNBnjAHV9lChoBkdAcPsHrhR64WgHS91oCEdAolEf9vS+g3V9lChoBkdAY60eT3Zf2WgHTegDaAhHQKJRPXnyNGV1fZQoaAZHQHCfla8pTddoB0v0aAhHQKJRQPT5O8F1fZQoaAZHQHEI3kkrwvxoB0v6aAhHQKJRoagmJFd1fZQoaAZHQHABWhmGucNoB0vlaAhHQKJR4zNUwSJ1fZQoaAZHQHHoma2F36hoB0vDaAhHQKJSIcslLOB1fZQoaAZHQHES2QfZElVoB0vfaAhHQKJSKGrS3LF1fZQoaAZHQGVUSJCSidtoB03oA2gIR0CiUjVtoBaLdX2UKGgGR0Bv94IldC3PaAdL7mgIR0CiUqtl7MPjdX2UKGgGR0Bv28R+SbH7aAdL1GgIR0CiU9AJswcpdX2UKGgGR0BwF4D/2kBTaAdL22gIR0CiVCEGRmsedX2UKGgGR0Bu0RjQRf4RaAdLz2gIR0CiVKMCT2WZdX2UKGgGR0Bxn5cqvvBraAdL5GgIR0CiVLOctoSMdX2UKGgGR0Bw3I2fkFOgaAdLy2gIR0CiVR68Hv+gdX2UKGgGR0BwTdzKcNH6aAdL9GgIR0CiVXLtNSIhdX2UKGgGR0BwtBic5Ke1aAdL2GgIR0CiVaW3jMmndX2UKGgGR0By5UWcjJMhaAdNAwFoCEdAolW2Fxn3+XV9lChoBkdAYvRyPuG9H2gHTegDaAhHQKJVu3IdU851fZQoaAZHQHI6nb/Ot4loB0vTaAhHQKJV2DMeOn51fZQoaAZHQG+ysUh3aBZoB0vkaAhHQKJWEyzHCGh1fZQoaAZHQHKfVOsT37FoB0vmaAhHQKJWsUpNKyx1fZQoaAZHQHG3pwbVBldoB0vLaAhHQKJXXTaTOgR1fZQoaAZHQHE2tPci4axoB0v1aAhHQKJYaPqcEvF1fZQoaAZHQHFuECmuTzNoB0viaAhHQKJYjmcvugJ1fZQoaAZHQGKXOVgQYk5oB03oA2gIR0CiWWIkJKJ3dX2UKGgGR0BxTZQqI7/5aAdL6WgIR0CiWYZv99+gdX2UKGgGR0Bs2vqX4TK1aAdL9mgIR0CiWfLiVB2PdX2UKGgGR0BuHYxrSE13aAdL8WgIR0CiWg6mGdqddX2UKGgGR0BybE1yeZogaAdL/GgIR0CiWijKgZjydX2UKGgGR0BzMdON5t3waAdNCwFoCEdAolpiw0O3D3V9lChoBkdAcd+dhRZU1mgHTRMBaAhHQKJa7NZeRgZ1fZQoaAZHQHFiywr1/UhoB00JAWgIR0CiW2v8IiTudX2UKGgGR0Bv2/D7655JaAdL7GgIR0CiW8jGLk0adX2UKGgGR0Bw61wxWT5gaAdLy2gIR0CiXOsqSX+mdX2UKGgGR0BxafIU8FINaAdLzGgIR0CiYFU+s5n2dX2UKGgGR0Bwu7yc0+C9aAdL7WgIR0CiYK1bqyGBdX2UKGgGR0BwcCvmozeoaAdL1WgIR0CiYMm5+YtydX2UKGgGR0Bw1QaisXBQaAdLw2gIR0CiYNdvjwQUdX2UKGgGR0ByZGBun/DMaAdL52gIR0CiYdlvAGjcdX2UKGgGR0Bw/pG+bmU4aAdNFgFoCEdAomIYR7JGOXV9lChoBkdAZIhGLDQ7cWgHTegDaAhHQKJibFBIFvB1fZQoaAZHQHIjx4hUzbhoB0vjaAhHQKJjGYrJ8v51fZQoaAZHQHJ/vMr3CbdoB0vQaAhHQKJjiFCb+cZ1fZQoaAZHQG77vgFX7tRoB0vfaAhHQKJjkkjX4CZ1fZQoaAZHQHBUvci4axZoB0vhaAhHQKJklZOBUaR1fZQoaAZHQGR+uLiuMddoB03oA2gIR0CiZYvomoitdX2UKGgGR0Bx71tj0+TvaAdL5GgIR0CiZrj7qIJrdX2UKGgGR0BxsjU3GXHBaAdL62gIR0CiZ2e85CF9dX2UKGgGR0BuvY5eZ5RkaAdL2GgIR0CiZ4cHWz4UdX2UKGgGR0Bxvx/+bVjJaAdL2GgIR0CiaB9gv115dX2UKGgGR0Byo96Uqx1QaAdL+GgIR0CiaEA7gbZOdX2UKGgGR0BwPBqmCROlaAdL2WgIR0CiaGx77bcodX2UKGgGR0BuxdP8AJb/aAdL3GgIR0CiaWbSZ0CBdX2UKGgGR0BnsV+XqqwRaAdN6ANoCEdAomqBqZc9n3V9lChoBkdAcTsEDyOJcmgHTQkBaAhHQKJqylZX+2p1fZQoaAZHQHEiV14gRsdoB0vaaAhHQKJrkNZNfw91fZQoaAZHQHBrLMgU1yhoB0vtaAhHQKJtCSIP9UF1fZQoaAZHQHIThcVxjrloB0vSaAhHQKJtB5WRzRx1fZQoaAZHQG/DeSKWLP5oB0vpaAhHQKJtghM8HOd1fZQoaAZHQHBRTwYtQKtoB0vnaAhHQKJtuznied11fZQoaAZHQHHluFL39JloB0vtaAhHQKJtyM7U5Ml1fZQoaAZHQGBUKJdjXnRoB03oA2gIR0CibdYBmwqzdX2UKGgGR0Bio5mwqy4XaAdN6ANoCEdAom5G4/eLvXV9lChoBkdAcP0+x4Y772gHS+toCEdAom5+21D0DnV9lChoBkdAcPYoG6f8M2gHS8JoCEdAom69dJJ5FHV9lChoBkdAcAmEP1+RYGgHTWMBaAhHQKJwJPv8ZUF1fZQoaAZHQHJ8SUX531VoB00EAWgIR0CicQOmrKeTdX2UKGgGR0BwCDzH0btJaAdL1GgIR0CicVoiTt9hdX2UKGgGR0Bwn+Xw9aEBaAdL0GgIR0CicavbXYlIdX2UKGgGR0BwGbnuAqd6aAdLyWgIR0CicbrQHAymdX2UKGgGR0BkFwrz5GjLaAdN6ANoCEdAonIjMJQcgnV9lChoBkdAcqlo60Y0mGgHS9toCEdAonKahBZ6lnV9lChoBkdAcfCNNJvo/2gHTQ4BaAhHQKJzHnmJWNp1fZQoaAZHQHCzc10knkVoB0vgaAhHQKJzMHoHLRt1fZQoaAZHQHLQeKjzqbBoB00qAWgIR0CidGMibDuSdX2UKGgGR0ByaSIcinpCaAdNXAFoCEdAonSvhVENOXV9lChoBkdAcG4Z8KG+K2gHS99oCEdAonV6WiUPhHV9lChoBkdAcAAkjX4CZGgHS8RoCEdAonWFANXo1XV9lChoBkdAb5yFxGUfP2gHS8toCEdAonW4/JNj9XV9lChoBkdAcMctEG7jDWgHTRoBaAhHQKJ1yAGSpzd1fZQoaAZHQHEMrbg0j1RoB0vIaAhHQKJ2BBUrCnB1fZQoaAZHQHBhirHU+cJoB0v2aAhHQKJ2KGbCrLh1fZQoaAZHQG/h7FsHjZNoB0vYaAhHQKJ3Ox46fap1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 320, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ab0497c704f748f628cdb1ee0834e143e60cfb4816f152a4b8b43bdaf87522a
|
3 |
+
size 147995
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b705fcb8ca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b705fcb8d30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b705fcb8dc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b705fcb8e50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b705fcb8ee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b705fcb8f70>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b705fcb9000>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b705fcb9090>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b705fcb9120>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b705fcb91b0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b705fcb9240>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b705fcb92d0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b705fe4f180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1709660301484065165,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABZnjT78wIE+GOvWvRSQmb7CMqk9Qv9WvQAAAAAAAAAAposDPnEvbrtj9nE6fOoKuIG827xYaKK5AAAAAAAAgD+zchm+j90yvO4+MDsReEQ5mXecPfBybroAAIA/AACAP9oIS76PYyk+MhXjPXufg74dpYg7d3asPAAAAAAAAAAAQEfEPUj5irpg1cA7eyvfN96tGztdu/41AAAAAAAAgD/zcKq9XtO5Php8uzpSPsS+Xq01vUKbiDwAAAAAAAAAAE0gBr5TKgQ/KJVuPTYM2L7pYyu9OzXdPAAAAAAAAAAA7eAtPuxApzwg/dQ4/OKbNyBDMT6VDiG4AACAPwAAgD9TIE0+4dSUur6QAr0tIFk7oRzHPiZQE70AAIA/AACAP5odnryjARc9htCGPf8UM74Iqwo9JhSAvQAAAAAAAAAAzSrRPRQ0nbriVI02LPSBMSpBV7n0QKa1AAAAAAAAgD9aLck9SFmRur9ZjTrxhXo1HvsYu6zuo7kAAAAAAACAPzqKOr5Z2HU+4O/MPVIea74WrGW9g67+OwAAAAAAAAAADYcBPu9Imz92uBc/SyQrv4rVDD7Ykp0+AAAAAAAAAADNnnY9HQxqPuF/szyc+Ia+wsHDPM3pPb0AAAAAAAAAAJowPr7sbN27gGm+OYrvSTdguFI9Et3kuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFZWBSUC7uMAWyUS/6MAXSUR0CiEqb7bcoIdX2UKGgGR0Bzw6jBVMmGaAdNBwFoCEdAohMGPmxMWXV9lChoBkdAcR4wob4rSWgHS9VoCEdAokl+bXpW3nV9lChoBkdAcVJavicXnGgHTR0BaAhHQKJJvrvb48F1fZQoaAZHQHEyaL876pJoB0vYaAhHQKJKZQfIS151fZQoaAZHQHHAFenhsIpoB0vAaAhHQKJKt4k/r0J1fZQoaAZHQG3D6fapPyloB00dAWgIR0CiStSrxRVIdX2UKGgGR0BkHbeIl+mWaAdN6ANoCEdAoks5X2dupHV9lChoBkdAcwqVVghKUWgHTQIBaAhHQKJLOg4ffXR1fZQoaAZHQHJuYIKMNttoB00KAWgIR0CiTGrWAf+1dX2UKGgGR0BwGkJv5xioaAdNIANoCEdAok0cGVzIWHV9lChoBkdAX8QfgaWHDmgHTegDaAhHQKJNsR+SbH91fZQoaAZHQF9RRv3rUspoB03oA2gIR0CiTd5LRKHxdX2UKGgGR0BBgR9G7SRbaAdLuGgIR0CiTq6+N96UdX2UKGgGR0Bk3Vtl7MPjaAdN6ANoCEdAolBEh5gPVnV9lChoBkdAcMGaIeo1k2gHS/FoCEdAolBwpjMFEHV9lChoBkdAcqDR51Ng0GgHS+1oCEdAolDMNBnjAHV9lChoBkdAcPsHrhR64WgHS91oCEdAolEf9vS+g3V9lChoBkdAY60eT3Zf2WgHTegDaAhHQKJRPXnyNGV1fZQoaAZHQHCfla8pTddoB0v0aAhHQKJRQPT5O8F1fZQoaAZHQHEI3kkrwvxoB0v6aAhHQKJRoagmJFd1fZQoaAZHQHABWhmGucNoB0vlaAhHQKJR4zNUwSJ1fZQoaAZHQHHoma2F36hoB0vDaAhHQKJSIcslLOB1fZQoaAZHQHES2QfZElVoB0vfaAhHQKJSKGrS3LF1fZQoaAZHQGVUSJCSidtoB03oA2gIR0CiUjVtoBaLdX2UKGgGR0Bv94IldC3PaAdL7mgIR0CiUqtl7MPjdX2UKGgGR0Bv28R+SbH7aAdL1GgIR0CiU9AJswcpdX2UKGgGR0BwF4D/2kBTaAdL22gIR0CiVCEGRmsedX2UKGgGR0Bu0RjQRf4RaAdLz2gIR0CiVKMCT2WZdX2UKGgGR0Bxn5cqvvBraAdL5GgIR0CiVLOctoSMdX2UKGgGR0Bw3I2fkFOgaAdLy2gIR0CiVR68Hv+gdX2UKGgGR0BwTdzKcNH6aAdL9GgIR0CiVXLtNSIhdX2UKGgGR0BwtBic5Ke1aAdL2GgIR0CiVaW3jMmndX2UKGgGR0By5UWcjJMhaAdNAwFoCEdAolW2Fxn3+XV9lChoBkdAYvRyPuG9H2gHTegDaAhHQKJVu3IdU851fZQoaAZHQHI6nb/Ot4loB0vTaAhHQKJV2DMeOn51fZQoaAZHQG+ysUh3aBZoB0vkaAhHQKJWEyzHCGh1fZQoaAZHQHKfVOsT37FoB0vmaAhHQKJWsUpNKyx1fZQoaAZHQHG3pwbVBldoB0vLaAhHQKJXXTaTOgR1fZQoaAZHQHE2tPci4axoB0v1aAhHQKJYaPqcEvF1fZQoaAZHQHFuECmuTzNoB0viaAhHQKJYjmcvugJ1fZQoaAZHQGKXOVgQYk5oB03oA2gIR0CiWWIkJKJ3dX2UKGgGR0BxTZQqI7/5aAdL6WgIR0CiWYZv99+gdX2UKGgGR0Bs2vqX4TK1aAdL9mgIR0CiWfLiVB2PdX2UKGgGR0BuHYxrSE13aAdL8WgIR0CiWg6mGdqddX2UKGgGR0BybE1yeZogaAdL/GgIR0CiWijKgZjydX2UKGgGR0BzMdON5t3waAdNCwFoCEdAolpiw0O3D3V9lChoBkdAcd+dhRZU1mgHTRMBaAhHQKJa7NZeRgZ1fZQoaAZHQHFiywr1/UhoB00JAWgIR0CiW2v8IiTudX2UKGgGR0Bv2/D7655JaAdL7GgIR0CiW8jGLk0adX2UKGgGR0Bw61wxWT5gaAdLy2gIR0CiXOsqSX+mdX2UKGgGR0BxafIU8FINaAdLzGgIR0CiYFU+s5n2dX2UKGgGR0Bwu7yc0+C9aAdL7WgIR0CiYK1bqyGBdX2UKGgGR0BwcCvmozeoaAdL1WgIR0CiYMm5+YtydX2UKGgGR0Bw1QaisXBQaAdLw2gIR0CiYNdvjwQUdX2UKGgGR0ByZGBun/DMaAdL52gIR0CiYdlvAGjcdX2UKGgGR0Bw/pG+bmU4aAdNFgFoCEdAomIYR7JGOXV9lChoBkdAZIhGLDQ7cWgHTegDaAhHQKJibFBIFvB1fZQoaAZHQHIjx4hUzbhoB0vjaAhHQKJjGYrJ8v51fZQoaAZHQHJ/vMr3CbdoB0vQaAhHQKJjiFCb+cZ1fZQoaAZHQG77vgFX7tRoB0vfaAhHQKJjkkjX4CZ1fZQoaAZHQHBUvci4axZoB0vhaAhHQKJklZOBUaR1fZQoaAZHQGR+uLiuMddoB03oA2gIR0CiZYvomoitdX2UKGgGR0Bx71tj0+TvaAdL5GgIR0CiZrj7qIJrdX2UKGgGR0BxsjU3GXHBaAdL62gIR0CiZ2e85CF9dX2UKGgGR0BuvY5eZ5RkaAdL2GgIR0CiZ4cHWz4UdX2UKGgGR0Bxvx/+bVjJaAdL2GgIR0CiaB9gv115dX2UKGgGR0Byo96Uqx1QaAdL+GgIR0CiaEA7gbZOdX2UKGgGR0BwPBqmCROlaAdL2WgIR0CiaGx77bcodX2UKGgGR0BuxdP8AJb/aAdL3GgIR0CiaWbSZ0CBdX2UKGgGR0BnsV+XqqwRaAdN6ANoCEdAomqBqZc9n3V9lChoBkdAcTsEDyOJcmgHTQkBaAhHQKJqylZX+2p1fZQoaAZHQHEiV14gRsdoB0vaaAhHQKJrkNZNfw91fZQoaAZHQHBrLMgU1yhoB0vtaAhHQKJtCSIP9UF1fZQoaAZHQHIThcVxjrloB0vSaAhHQKJtB5WRzRx1fZQoaAZHQG/DeSKWLP5oB0vpaAhHQKJtghM8HOd1fZQoaAZHQHBRTwYtQKtoB0vnaAhHQKJtuznied11fZQoaAZHQHHluFL39JloB0vtaAhHQKJtyM7U5Ml1fZQoaAZHQGBUKJdjXnRoB03oA2gIR0CibdYBmwqzdX2UKGgGR0Bio5mwqy4XaAdN6ANoCEdAom5G4/eLvXV9lChoBkdAcP0+x4Y772gHS+toCEdAom5+21D0DnV9lChoBkdAcPYoG6f8M2gHS8JoCEdAom69dJJ5FHV9lChoBkdAcAmEP1+RYGgHTWMBaAhHQKJwJPv8ZUF1fZQoaAZHQHJ8SUX531VoB00EAWgIR0CicQOmrKeTdX2UKGgGR0BwCDzH0btJaAdL1GgIR0CicVoiTt9hdX2UKGgGR0Bwn+Xw9aEBaAdL0GgIR0CicavbXYlIdX2UKGgGR0BwGbnuAqd6aAdLyWgIR0CicbrQHAymdX2UKGgGR0BkFwrz5GjLaAdN6ANoCEdAonIjMJQcgnV9lChoBkdAcqlo60Y0mGgHS9toCEdAonKahBZ6lnV9lChoBkdAcfCNNJvo/2gHTQ4BaAhHQKJzHnmJWNp1fZQoaAZHQHCzc10knkVoB0vgaAhHQKJzMHoHLRt1fZQoaAZHQHLQeKjzqbBoB00qAWgIR0CidGMibDuSdX2UKGgGR0ByaSIcinpCaAdNXAFoCEdAonSvhVENOXV9lChoBkdAcG4Z8KG+K2gHS99oCEdAonV6WiUPhHV9lChoBkdAcAAkjX4CZGgHS8RoCEdAonWFANXo1XV9lChoBkdAb5yFxGUfP2gHS8toCEdAonW4/JNj9XV9lChoBkdAcMctEG7jDWgHTRoBaAhHQKJ1yAGSpzd1fZQoaAZHQHEMrbg0j1RoB0vIaAhHQKJ2BBUrCnB1fZQoaAZHQHBhirHU+cJoB0v2aAhHQKJ2KGbCrLh1fZQoaAZHQG/h7FsHjZNoB0vYaAhHQKJ3Ox46fap1ZS4="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 320,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af328fd8b11396e9a463da6939d5ed5484ce52d525cf529e0101f353eeb00f2f
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1d483ef565cc75b96729b3c0ee5903a6b98199e8c7dbfee6c74f3fce31967e8f
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (167 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 256.27406099999996, "std_reward": 16.512382767505148, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-05T18:06:44.959101"}
|