--- license: mit base_model: joeddav/xlm-roberta-large-xnli tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-v2.0 results: [] --- # xlm-roberta-large-xnli-v2.0 This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3413 - F1 Macro: 0.8779 - F1 Micro: 0.8787 - Accuracy Balanced: 0.8773 - Accuracy: 0.8787 - Precision Macro: 0.8788 - Recall Macro: 0.8773 - Precision Micro: 0.8787 - Recall Micro: 0.8787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 40 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.4814 | 0.17 | 200 | 0.4554 | 0.7851 | 0.7867 | 0.7852 | 0.7867 | 0.7850 | 0.7852 | 0.7867 | 0.7867 | | 0.4031 | 0.34 | 400 | 0.4020 | 0.8228 | 0.8237 | 0.8235 | 0.8237 | 0.8223 | 0.8235 | 0.8237 | 0.8237 | | 0.3425 | 0.51 | 600 | 0.3603 | 0.8450 | 0.8454 | 0.8473 | 0.8454 | 0.8448 | 0.8473 | 0.8454 | 0.8454 | | 0.3374 | 0.68 | 800 | 0.3520 | 0.8518 | 0.8523 | 0.8538 | 0.8523 | 0.8514 | 0.8538 | 0.8523 | 0.8523 | | 0.326 | 0.85 | 1000 | 0.3386 | 0.8529 | 0.8544 | 0.8521 | 0.8544 | 0.8541 | 0.8521 | 0.8544 | 0.8544 | | 0.3059 | 1.02 | 1200 | 0.3425 | 0.8643 | 0.8650 | 0.8651 | 0.8650 | 0.8637 | 0.8651 | 0.8650 | 0.8650 | | 0.2563 | 1.19 | 1400 | 0.3234 | 0.8708 | 0.8719 | 0.8703 | 0.8719 | 0.8713 | 0.8703 | 0.8719 | 0.8719 | | 0.252 | 1.36 | 1600 | 0.3487 | 0.8580 | 0.8581 | 0.8616 | 0.8581 | 0.8590 | 0.8616 | 0.8581 | 0.8581 | | 0.2323 | 1.52 | 1800 | 0.3576 | 0.8648 | 0.8666 | 0.8630 | 0.8666 | 0.8681 | 0.8630 | 0.8666 | 0.8666 | | 0.2669 | 1.69 | 2000 | 0.3888 | 0.8461 | 0.8502 | 0.8425 | 0.8502 | 0.8603 | 0.8425 | 0.8502 | 0.8502 | | 0.2514 | 1.86 | 2200 | 0.3323 | 0.8742 | 0.8751 | 0.8743 | 0.8751 | 0.8740 | 0.8743 | 0.8751 | 0.8751 | | 0.1999 | 2.03 | 2400 | 0.3649 | 0.8759 | 0.8767 | 0.8762 | 0.8767 | 0.8755 | 0.8762 | 0.8767 | 0.8767 | | 0.1764 | 2.2 | 2600 | 0.3889 | 0.8695 | 0.8708 | 0.8685 | 0.8708 | 0.8709 | 0.8685 | 0.8708 | 0.8708 | | 0.1729 | 2.37 | 2800 | 0.3741 | 0.8676 | 0.8687 | 0.8674 | 0.8687 | 0.8679 | 0.8674 | 0.8687 | 0.8687 | | 0.159 | 2.54 | 3000 | 0.3844 | 0.8760 | 0.8767 | 0.8772 | 0.8767 | 0.8754 | 0.8772 | 0.8767 | 0.8767 | | 0.178 | 2.71 | 3200 | 0.3771 | 0.8693 | 0.8708 | 0.8680 | 0.8708 | 0.8714 | 0.8680 | 0.8708 | 0.8708 | | 0.1893 | 2.88 | 3400 | 0.3678 | 0.8722 | 0.8729 | 0.8730 | 0.8729 | 0.8717 | 0.8730 | 0.8729 | 0.8729 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.357|0.261|0.369|0.341| |eval_f1_macro|0.872|0.919|0.874|0.878| |eval_f1_micro|0.874|0.919|0.875|0.879| |eval_accuracy_balanced|0.872|0.919|0.874|0.877| |eval_accuracy|0.874|0.919|0.875|0.879| |eval_precision_macro|0.873|0.919|0.874|0.879| |eval_recall_macro|0.872|0.919|0.874|0.877| |eval_precision_micro|0.874|0.919|0.875|0.879| |eval_recall_micro|0.874|0.919|0.875|0.879| |eval_runtime|50.977|0.625|11.165|44.322| |eval_samples_per_second|166.741|1514.715|169.192|170.501| |eval_steps_per_second|2.609|24.018|2.687|2.685| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3