61347023S commited on
Commit
6f5abe0
1 Parent(s): fd28101

End of training

Browse files
Files changed (3) hide show
  1. README.md +70 -0
  2. config.json +1 -1
  3. pytorch_model.bin +2 -2
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: joeddav/xlm-roberta-large-xnli
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: xlm-roberta-large-xnli-v4.0
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # xlm-roberta-large-xnli-v4.0
17
+
18
+ This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.4963
21
+ - F1 Macro: 0.8192
22
+ - F1 Micro: 0.8204
23
+ - Accuracy Balanced: 0.8190
24
+ - Accuracy: 0.8204
25
+ - Precision Macro: 0.8193
26
+ - Recall Macro: 0.8190
27
+ - Precision Micro: 0.8204
28
+ - Recall Micro: 0.8204
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 9e-06
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 64
50
+ - seed: 40
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 32
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.06
56
+ - num_epochs: 3
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
62
+ | 0.3593 | 1.69 | 200 | 0.4297 | 0.8211 | 0.8218 | 0.8224 | 0.8218 | 0.8206 | 0.8224 | 0.8218 | 0.8218 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.33.3
68
+ - Pytorch 2.5.1+cu121
69
+ - Datasets 2.14.7
70
+ - Tokenizers 0.13.3
config.json CHANGED
@@ -30,7 +30,7 @@
30
  "pad_token_id": 1,
31
  "position_embedding_type": "absolute",
32
  "problem_type": "single_label_classification",
33
- "torch_dtype": "float32",
34
  "transformers_version": "4.33.3",
35
  "type_vocab_size": 1,
36
  "use_cache": true,
 
30
  "pad_token_id": 1,
31
  "position_embedding_type": "absolute",
32
  "problem_type": "single_label_classification",
33
+ "torch_dtype": "float16",
34
  "transformers_version": "4.33.3",
35
  "type_vocab_size": 1,
36
  "use_cache": true,
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4a931ec09f2147ef9b0b04ebc89e3dbcb1dbb9dcf97da12008abebed6442ac7c
3
- size 2239705966
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:170c903facca33d4a379073248ea47de8f2b881e20c9b65ddd8f7e30824d5a38
3
+ size 1119921006