End of training
Browse files- README.md +72 -0
- config.json +1 -1
- pytorch_model.bin +2 -2
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: joeddav/xlm-roberta-large-xnli
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: xlm-roberta-large-xnli-v5.0
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# xlm-roberta-large-xnli-v5.0
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4987
|
21 |
+
- F1 Macro: 0.8279
|
22 |
+
- F1 Micro: 0.8288
|
23 |
+
- Accuracy Balanced: 0.8278
|
24 |
+
- Accuracy: 0.8288
|
25 |
+
- Precision Macro: 0.8281
|
26 |
+
- Recall Macro: 0.8278
|
27 |
+
- Precision Micro: 0.8288
|
28 |
+
- Recall Micro: 0.8288
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 9e-06
|
48 |
+
- train_batch_size: 8
|
49 |
+
- eval_batch_size: 64
|
50 |
+
- seed: 40
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 32
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.06
|
56 |
+
- num_epochs: 3
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:|
|
62 |
+
| 0.3851 | 0.85 | 200 | 0.4586 | 0.8017 | 0.8025 | 0.8029 | 0.8025 | 0.8012 | 0.8029 | 0.8025 | 0.8025 |
|
63 |
+
| 0.2689 | 1.69 | 400 | 0.4498 | 0.8137 | 0.8147 | 0.8145 | 0.8147 | 0.8133 | 0.8145 | 0.8147 | 0.8147 |
|
64 |
+
| 0.194 | 2.54 | 600 | 0.5334 | 0.8244 | 0.8253 | 0.8252 | 0.8253 | 0.8239 | 0.8252 | 0.8253 | 0.8253 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.33.3
|
70 |
+
- Pytorch 2.5.1+cu121
|
71 |
+
- Datasets 2.14.7
|
72 |
+
- Tokenizers 0.13.3
|
config.json
CHANGED
@@ -30,7 +30,7 @@
|
|
30 |
"pad_token_id": 1,
|
31 |
"position_embedding_type": "absolute",
|
32 |
"problem_type": "single_label_classification",
|
33 |
-
"torch_dtype": "
|
34 |
"transformers_version": "4.33.3",
|
35 |
"type_vocab_size": 1,
|
36 |
"use_cache": true,
|
|
|
30 |
"pad_token_id": 1,
|
31 |
"position_embedding_type": "absolute",
|
32 |
"problem_type": "single_label_classification",
|
33 |
+
"torch_dtype": "float16",
|
34 |
"transformers_version": "4.33.3",
|
35 |
"type_vocab_size": 1,
|
36 |
"use_cache": true,
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:21a0f19482903e53dd86ca8c59300ac899c22f4fa640e1e1363a8067d01c154f
|
3 |
+
size 1119921006
|