File size: 15,114 Bytes
4c8765e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
2023-04-01 21:45:09,865   INFO  **********************Start logging**********************
2023-04-01 21:45:09,866   INFO  CUDA_VISIBLE_DEVICES=ALL
2023-04-01 21:45:09,866   INFO  total_batch_size: 16
2023-04-01 21:45:09,867   INFO  cfg_file         cfgs/scannet_models/CAGroup3D.yaml
2023-04-01 21:45:09,868   INFO  batch_size       16
2023-04-01 21:45:09,868   INFO  workers          4
2023-04-01 21:45:09,869   INFO  extra_tag        cagroup3d-win10-scannet-eval
2023-04-01 21:45:09,869   INFO  ckpt             ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train/ckpt/checkpoint_epoch_8.pth
2023-04-01 21:45:09,870   INFO  launcher         pytorch
2023-04-01 21:45:09,870   INFO  tcp_port         18888
2023-04-01 21:45:09,870   INFO  set_cfgs         None
2023-04-01 21:45:09,872   INFO  max_waiting_mins 30
2023-04-01 21:45:09,872   INFO  start_epoch      0
2023-04-01 21:45:09,872   INFO  eval_tag         default
2023-04-01 21:45:09,872   INFO  eval_all         False
2023-04-01 21:45:09,873   INFO  ckpt_dir         None
2023-04-01 21:45:09,873   INFO  save_to_file     False
2023-04-01 21:45:09,875   INFO  cfg.ROOT_DIR: C:\CITYU\CS5182\proj\CAGroup3D
2023-04-01 21:45:09,876   INFO  cfg.LOCAL_RANK: 0
2023-04-01 21:45:09,876   INFO  cfg.CLASS_NAMES: ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin']
2023-04-01 21:45:09,876   INFO  
cfg.DATA_CONFIG = edict()
2023-04-01 21:45:09,878   INFO  cfg.DATA_CONFIG.DATASET: ScannetDataset
2023-04-01 21:45:09,878   INFO  cfg.DATA_CONFIG.DATA_PATH: ../data/scannet_data/ScanNetV2
2023-04-01 21:45:09,879   INFO  cfg.DATA_CONFIG.PROCESSED_DATA_TAG: scannet_processed_data_v0_5_0
2023-04-01 21:45:09,879   INFO  cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
2023-04-01 21:45:09,880   INFO  
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2023-04-01 21:45:09,880   INFO  cfg.DATA_CONFIG.DATA_SPLIT.train: train
2023-04-01 21:45:09,880   INFO  cfg.DATA_CONFIG.DATA_SPLIT.test: val
2023-04-01 21:45:09,882   INFO  
cfg.DATA_CONFIG.REPEAT = edict()
2023-04-01 21:45:09,883   INFO  cfg.DATA_CONFIG.REPEAT.train: 10
2023-04-01 21:45:09,883   INFO  cfg.DATA_CONFIG.REPEAT.test: 1
2023-04-01 21:45:09,884   INFO  
cfg.DATA_CONFIG.INFO_PATH = edict()
2023-04-01 21:45:09,884   INFO  cfg.DATA_CONFIG.INFO_PATH.train: ['scannet_infos_train.pkl']
2023-04-01 21:45:09,885   INFO  cfg.DATA_CONFIG.INFO_PATH.test: ['scannet_infos_val.pkl']
2023-04-01 21:45:09,886   INFO  cfg.DATA_CONFIG.GET_ITEM_LIST: ['points', 'instance_mask', 'semantic_mask']
2023-04-01 21:45:09,886   INFO  cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
2023-04-01 21:45:09,887   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
2023-04-01 21:45:09,887   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
2023-04-01 21:45:09,888   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}, {'NAME': 'point_seg_class_mapping', 'valid_cat_ids': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39], 'max_cat_id': 40}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x', 'y']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.087266, 0.087266]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.9, 1.1]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
2023-04-01 21:45:09,890   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
2023-04-01 21:45:09,890   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
2023-04-01 21:45:09,890   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
2023-04-01 21:45:09,890   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
2023-04-01 21:45:09,892   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2023-04-01 21:45:09,893   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
2023-04-01 21:45:09,893   INFO  
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2023-04-01 21:45:09,894   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2023-04-01 21:45:09,895   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-04-01 21:45:09,895   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-04-01 21:45:09,896   INFO  cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}]
2023-04-01 21:45:09,896   INFO  cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/scannet_dataset.yaml
2023-04-01 21:45:09,896   INFO  cfg.VOXEL_SIZE: 0.02
2023-04-01 21:45:09,896   INFO  cfg.N_CLASSES: 18
2023-04-01 21:45:09,898   INFO  cfg.SEMANTIC_THR: 0.15
2023-04-01 21:45:09,898   INFO  
cfg.MODEL = edict()
2023-04-01 21:45:09,899   INFO  cfg.MODEL.NAME: CAGroup3D
2023-04-01 21:45:09,899   INFO  cfg.MODEL.VOXEL_SIZE: 0.02
2023-04-01 21:45:09,900   INFO  cfg.MODEL.SEMANTIC_MIN_THR: 0.05
2023-04-01 21:45:09,900   INFO  cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
2023-04-01 21:45:09,900   INFO  cfg.MODEL.SEMANTIC_THR: 0.15
2023-04-01 21:45:09,901   INFO  
cfg.MODEL.BACKBONE_3D = edict()
2023-04-01 21:45:09,901   INFO  cfg.MODEL.BACKBONE_3D.NAME: BiResNet
2023-04-01 21:45:09,902   INFO  cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
2023-04-01 21:45:09,902   INFO  cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
2023-04-01 21:45:09,902   INFO  
cfg.MODEL.DENSE_HEAD = edict()
2023-04-01 21:45:09,903   INFO  cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
2023-04-01 21:45:09,903   INFO  cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
2023-04-01 21:45:09,904   INFO  cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
2023-04-01 21:45:09,904   INFO  cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
2023-04-01 21:45:09,905   INFO  cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
2023-04-01 21:45:09,905   INFO  cfg.MODEL.DENSE_HEAD.N_CLASSES: 18
2023-04-01 21:45:09,906   INFO  cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 6
2023-04-01 21:45:09,906   INFO  cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
2023-04-01 21:45:09,906   INFO  cfg.MODEL.DENSE_HEAD.WITH_YAW: False
2023-04-01 21:45:09,907   INFO  cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
2023-04-01 21:45:09,907   INFO  cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
2023-04-01 21:45:09,908   INFO  
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
2023-04-01 21:45:09,908   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
2023-04-01 21:45:09,909   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
2023-04-01 21:45:09,909   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
2023-04-01 21:45:09,909   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
2023-04-01 21:45:09,910   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
2023-04-01 21:45:09,910   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
2023-04-01 21:45:09,911   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
2023-04-01 21:45:09,911   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
2023-04-01 21:45:09,912   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 1.0
2023-04-01 21:45:09,912   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
2023-04-01 21:45:09,913   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
2023-04-01 21:45:09,913   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: False
2023-04-01 21:45:09,914   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
2023-04-01 21:45:09,914   INFO  
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
2023-04-01 21:45:09,915   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
2023-04-01 21:45:09,915   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
2023-04-01 21:45:09,916   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
2023-04-01 21:45:09,916   INFO  
cfg.MODEL.ROI_HEAD = edict()
2023-04-01 21:45:09,917   INFO  cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
2023-04-01 21:45:09,917   INFO  cfg.MODEL.ROI_HEAD.NUM_CLASSES: 18
2023-04-01 21:45:09,918   INFO  cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
2023-04-01 21:45:09,918   INFO  cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
2023-04-01 21:45:09,919   INFO  cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
2023-04-01 21:45:09,919   INFO  cfg.MODEL.ROI_HEAD.COORD_KEY: 2
2023-04-01 21:45:09,919   INFO  cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
2023-04-01 21:45:09,920   INFO  cfg.MODEL.ROI_HEAD.CODE_SIZE: 6
2023-04-01 21:45:09,920   INFO  cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: False
2023-04-01 21:45:09,921   INFO  cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
2023-04-01 21:45:09,921   INFO  cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
2023-04-01 21:45:09,921   INFO  cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
2023-04-01 21:45:09,922   INFO  cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
2023-04-01 21:45:09,922   INFO  cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
2023-04-01 21:45:09,923   INFO  cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: False
2023-04-01 21:45:09,923   INFO  cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
2023-04-01 21:45:09,923   INFO  cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
2023-04-01 21:45:09,923   INFO  cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
2023-04-01 21:45:09,924   INFO  
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
2023-04-01 21:45:09,925   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
2023-04-01 21:45:09,927   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 1.0
2023-04-01 21:45:09,927   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
2023-04-01 21:45:09,928   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2023-04-01 21:45:09,928   INFO  
cfg.MODEL.POST_PROCESSING = edict()
2023-04-01 21:45:09,928   INFO  cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
2023-04-01 21:45:09,929   INFO  cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
2023-04-01 21:45:09,929   INFO  
cfg.OPTIMIZATION = edict()
2023-04-01 21:45:09,931   INFO  cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
2023-04-01 21:45:09,931   INFO  cfg.OPTIMIZATION.NUM_EPOCHS: 1
2023-04-01 21:45:09,931   INFO  cfg.OPTIMIZATION.OPTIMIZER: adamW
2023-04-01 21:45:09,932   INFO  cfg.OPTIMIZATION.LR: 0.001
2023-04-01 21:45:09,932   INFO  cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
2023-04-01 21:45:09,933   INFO  cfg.OPTIMIZATION.DECAY_STEP_LIST: [7, 9]
2023-04-01 21:45:09,933   INFO  cfg.OPTIMIZATION.LR_DECAY: 0.1
2023-04-01 21:45:09,933   INFO  cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2023-04-01 21:45:09,934   INFO  cfg.OPTIMIZATION.PCT_START: 0.4
2023-04-01 21:45:09,934   INFO  cfg.OPTIMIZATION.DIV_FACTOR: 10
2023-04-01 21:45:09,935   INFO  cfg.OPTIMIZATION.LR_CLIP: 1e-07
2023-04-01 21:45:09,935   INFO  cfg.OPTIMIZATION.LR_WARMUP: False
2023-04-01 21:45:09,936   INFO  cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2023-04-01 21:45:09,936   INFO  cfg.TAG: CAGroup3D
2023-04-01 21:45:09,937   INFO  cfg.EXP_GROUP_PATH: scannet_models
2023-04-01 21:45:09,937   INFO  Loading SCANNET dataset
2023-04-01 21:45:09,972   INFO  Total samples for SCANNET dataset: 312
2023-04-01 21:45:12,816   INFO  ==> Loading parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train/ckpt/checkpoint_epoch_8.pth to CPU
2023-04-01 21:45:13,846   INFO  ==> Checkpoint trained from version: pcdet+0.5.2+0000000
2023-04-01 21:45:13,984   INFO  ==> Done (loaded 838/838)
2023-04-01 21:45:14,393   INFO  *************** EPOCH 8 EVALUATION *****************
2023-04-02 00:01:12,334   INFO  *************** Performance of EPOCH 8 *****************
2023-04-02 00:01:12,334   INFO  Generate label finished(sec_per_example: 26.1406 second).
2023-04-02 00:01:12,335   INFO  recall_roi_0.25: 0.000000
2023-04-02 00:01:12,336   INFO  recall_rcnn_0.25: 0.000000
2023-04-02 00:01:12,336   INFO  recall_roi_0.5: 0.000000
2023-04-02 00:01:12,337   INFO  recall_rcnn_0.5: 0.000000
2023-04-02 00:01:12,337   INFO  Average predicted number of objects(312 samples): 490.029
2023-04-02 00:01:30,129   INFO  {'cabinet_AP_0.25': 0.5813855528831482, 'bed_AP_0.25': 0.8816422820091248, 'chair_AP_0.25': 0.9543977379798889, 'sofa_AP_0.25': 0.8942864537239075, 'table_AP_0.25': 0.6969487071037292, 'door_AP_0.25': 0.682966947555542, 'window_AP_0.25': 0.6282612085342407, 'bookshelf_AP_0.25': 0.7065274715423584, 'picture_AP_0.25': 0.3937835395336151, 'counter_AP_0.25': 0.7749427556991577, 'desk_AP_0.25': 0.84075927734375, 'curtain_AP_0.25': 0.7117773294448853, 'refrigerator_AP_0.25': 0.5583232641220093, 'showercurtrain_AP_0.25': 0.7335410118103027, 'toilet_AP_0.25': 1.0, 'sink_AP_0.25': 0.7548432350158691, 'bathtub_AP_0.25': 0.87208491563797, 'garbagebin_AP_0.25': 0.6607850790023804, 'mAP_0.25': 0.7404030561447144, 'cabinet_rec_0.25': 0.9112903225806451, 'bed_rec_0.25': 0.9259259259259259, 'chair_rec_0.25': 0.9714912280701754, 'sofa_rec_0.25': 0.9690721649484536, 'table_rec_0.25': 0.8485714285714285, 'door_rec_0.25': 0.9036402569593148, 'window_rec_0.25': 0.875886524822695, 'bookshelf_rec_0.25': 0.9090909090909091, 'picture_rec_0.25': 0.6441441441441441, 'counter_rec_0.25': 0.9038461538461539, 'desk_rec_0.25': 0.968503937007874, 'curtain_rec_0.25': 0.8656716417910447, 'refrigerator_rec_0.25': 0.8421052631578947, 'showercurtrain_rec_0.25': 0.9642857142857143, 'toilet_rec_0.25': 1.0, 'sink_rec_0.25': 0.8469387755102041, 'bathtub_rec_0.25': 0.9032258064516129, 'garbagebin_rec_0.25': 0.8849056603773585, 'mAR_0.25': 0.8965886587523083, 'cabinet_AP_0.50': 0.4341818690299988, 'bed_AP_0.50': 0.8374742865562439, 'chair_AP_0.50': 0.9089729189872742, 'sofa_AP_0.50': 0.8061330914497375, 'table_AP_0.50': 0.6511608958244324, 'door_AP_0.50': 0.5602805614471436, 'window_AP_0.50': 0.3997173607349396, 'bookshelf_AP_0.50': 0.5989829897880554, 'picture_AP_0.50': 0.28941845893859863, 'counter_AP_0.50': 0.4558248519897461, 'desk_AP_0.50': 0.6606391072273254, 'curtain_AP_0.50': 0.5577377676963806, 'refrigerator_AP_0.50': 0.5126804113388062, 'showercurtrain_AP_0.50': 0.48787981271743774, 'toilet_AP_0.50': 0.958685576915741, 'sink_AP_0.50': 0.5293706655502319, 'bathtub_AP_0.50': 0.7828920483589172, 'garbagebin_AP_0.50': 0.5928370952606201, 'mAP_0.50': 0.6124927997589111, 'cabinet_rec_0.50': 0.7446236559139785, 'bed_rec_0.50': 0.8765432098765432, 'chair_rec_0.50': 0.9305555555555556, 'sofa_rec_0.50': 0.9072164948453608, 'table_rec_0.50': 0.7742857142857142, 'door_rec_0.50': 0.7601713062098501, 'window_rec_0.50': 0.648936170212766, 'bookshelf_rec_0.50': 0.7792207792207793, 'picture_rec_0.50': 0.481981981981982, 'counter_rec_0.50': 0.6153846153846154, 'desk_rec_0.50': 0.84251968503937, 'curtain_rec_0.50': 0.7313432835820896, 'refrigerator_rec_0.50': 0.7719298245614035, 'showercurtrain_rec_0.50': 0.6428571428571429, 'toilet_rec_0.50': 0.9655172413793104, 'sink_rec_0.50': 0.6224489795918368, 'bathtub_rec_0.50': 0.8387096774193549, 'garbagebin_rec_0.50': 0.7754716981132076, 'mAR_0.50': 0.7616509453350477}
2023-04-02 00:01:30,138   INFO  Result is save to C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet-eval\eval\epoch_8\val\default
2023-04-02 00:01:30,139   INFO  ****************Evaluation done.*****************