train with eval
Browse files- ckpt/checkpoint_epoch_9.pth +3 -0
- eval/eval_with_train/epoch_9/val/result.pkl +3 -0
- eval/eval_with_train/eval_list_val.txt +1 -0
- eval/eval_with_train/tensorboard_val/events.out.tfevents.1680871213.DESKTOP-3FL13RB +3 -0
- log_train_20230402-191900.txt +930 -0
- tensorboard/events.out.tfevents.1680434340.DESKTOP-3FL13RB +3 -0
ckpt/checkpoint_epoch_9.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b910b73d996c405b80830274d59cbf60e36e5b9025e9e80cfcdedf40e4be43
|
3 |
+
size 1519000587
|
eval/eval_with_train/epoch_9/val/result.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef5a5dcee9b8887db1ec4b43999a16591ec9cbc897798d0d49efde6a11cbeeef
|
3 |
+
size 30081537
|
eval/eval_with_train/eval_list_val.txt
CHANGED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
9
|
eval/eval_with_train/tensorboard_val/events.out.tfevents.1680871213.DESKTOP-3FL13RB
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f477f591c353c9ca0f9547bbc4f4ced5c8c620edaa67f831de7fd0818a24eea1
|
3 |
+
size 4268
|
log_train_20230402-191900.txt
ADDED
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-04-02 19:19:00,193 INFO **********************Start logging**********************
|
2 |
+
2023-04-02 19:19:00,193 INFO CUDA_VISIBLE_DEVICES=ALL
|
3 |
+
2023-04-02 19:19:00,194 INFO total_batch_size: 16
|
4 |
+
2023-04-02 19:19:00,194 INFO cfg_file cfgs/scannet_models/CAGroup3D.yaml
|
5 |
+
2023-04-02 19:19:00,195 INFO batch_size 16
|
6 |
+
2023-04-02 19:19:00,196 INFO epochs 9
|
7 |
+
2023-04-02 19:19:00,196 INFO workers 4
|
8 |
+
2023-04-02 19:19:00,197 INFO extra_tag cagroup3d-win10-scannet-train
|
9 |
+
2023-04-02 19:19:00,197 INFO ckpt ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth
|
10 |
+
2023-04-02 19:19:00,198 INFO pretrained_model ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth
|
11 |
+
2023-04-02 19:19:00,199 INFO launcher pytorch
|
12 |
+
2023-04-02 19:19:00,199 INFO tcp_port 18888
|
13 |
+
2023-04-02 19:19:00,200 INFO sync_bn False
|
14 |
+
2023-04-02 19:19:00,200 INFO fix_random_seed True
|
15 |
+
2023-04-02 19:19:00,201 INFO ckpt_save_interval 1
|
16 |
+
2023-04-02 19:19:00,201 INFO max_ckpt_save_num 30
|
17 |
+
2023-04-02 19:19:00,202 INFO merge_all_iters_to_one_epoch False
|
18 |
+
2023-04-02 19:19:00,202 INFO set_cfgs None
|
19 |
+
2023-04-02 19:19:00,203 INFO max_waiting_mins 0
|
20 |
+
2023-04-02 19:19:00,203 INFO start_epoch 0
|
21 |
+
2023-04-02 19:19:00,204 INFO num_epochs_to_eval 0
|
22 |
+
2023-04-02 19:19:00,204 INFO save_to_file False
|
23 |
+
2023-04-02 19:19:00,205 INFO cfg.ROOT_DIR: C:\CITYU\CS5182\proj\CAGroup3D
|
24 |
+
2023-04-02 19:19:00,205 INFO cfg.LOCAL_RANK: 0
|
25 |
+
2023-04-02 19:19:00,206 INFO cfg.CLASS_NAMES: ['cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', 'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', 'toilet', 'sink', 'bathtub', 'garbagebin']
|
26 |
+
2023-04-02 19:19:00,207 INFO
|
27 |
+
cfg.DATA_CONFIG = edict()
|
28 |
+
2023-04-02 19:19:00,207 INFO cfg.DATA_CONFIG.DATASET: ScannetDataset
|
29 |
+
2023-04-02 19:19:00,208 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/scannet_data/ScanNetV2
|
30 |
+
2023-04-02 19:19:00,208 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: scannet_processed_data_v0_5_0
|
31 |
+
2023-04-02 19:19:00,209 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
|
32 |
+
2023-04-02 19:19:00,209 INFO
|
33 |
+
cfg.DATA_CONFIG.DATA_SPLIT = edict()
|
34 |
+
2023-04-02 19:19:00,210 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
|
35 |
+
2023-04-02 19:19:00,210 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
|
36 |
+
2023-04-02 19:19:00,211 INFO
|
37 |
+
cfg.DATA_CONFIG.REPEAT = edict()
|
38 |
+
2023-04-02 19:19:00,211 INFO cfg.DATA_CONFIG.REPEAT.train: 10
|
39 |
+
2023-04-02 19:19:00,212 INFO cfg.DATA_CONFIG.REPEAT.test: 1
|
40 |
+
2023-04-02 19:19:00,213 INFO
|
41 |
+
cfg.DATA_CONFIG.INFO_PATH = edict()
|
42 |
+
2023-04-02 19:19:00,213 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['scannet_infos_train.pkl']
|
43 |
+
2023-04-02 19:19:00,214 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['scannet_infos_val.pkl']
|
44 |
+
2023-04-02 19:19:00,214 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points', 'instance_mask', 'semantic_mask']
|
45 |
+
2023-04-02 19:19:00,215 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
|
46 |
+
2023-04-02 19:19:00,215 INFO
|
47 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
|
48 |
+
2023-04-02 19:19:00,216 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
|
49 |
+
2023-04-02 19:19:00,216 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}, {'NAME': 'point_seg_class_mapping', 'valid_cat_ids': [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 24, 28, 33, 34, 36, 39], 'max_cat_id': 40}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x', 'y']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.087266, 0.087266]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.9, 1.1]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
|
50 |
+
2023-04-02 19:19:00,217 INFO
|
51 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
|
52 |
+
2023-04-02 19:19:00,218 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
|
53 |
+
2023-04-02 19:19:00,218 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
|
54 |
+
2023-04-02 19:19:00,219 INFO
|
55 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
|
56 |
+
2023-04-02 19:19:00,219 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
|
57 |
+
2023-04-02 19:19:00,220 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'global_alignment', 'rotation_axis': 2}]
|
58 |
+
2023-04-02 19:19:00,220 INFO
|
59 |
+
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
|
60 |
+
2023-04-02 19:19:00,221 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
|
61 |
+
2023-04-02 19:19:00,222 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
62 |
+
2023-04-02 19:19:00,222 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
63 |
+
2023-04-02 19:19:00,223 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}]
|
64 |
+
2023-04-02 19:19:00,223 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/scannet_dataset.yaml
|
65 |
+
2023-04-02 19:19:00,224 INFO cfg.VOXEL_SIZE: 0.02
|
66 |
+
2023-04-02 19:19:00,224 INFO cfg.N_CLASSES: 18
|
67 |
+
2023-04-02 19:19:00,224 INFO cfg.SEMANTIC_THR: 0.15
|
68 |
+
2023-04-02 19:19:00,225 INFO
|
69 |
+
cfg.MODEL = edict()
|
70 |
+
2023-04-02 19:19:00,225 INFO cfg.MODEL.NAME: CAGroup3D
|
71 |
+
2023-04-02 19:19:00,226 INFO cfg.MODEL.VOXEL_SIZE: 0.02
|
72 |
+
2023-04-02 19:19:00,226 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05
|
73 |
+
2023-04-02 19:19:00,227 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
|
74 |
+
2023-04-02 19:19:00,227 INFO cfg.MODEL.SEMANTIC_THR: 0.15
|
75 |
+
2023-04-02 19:19:00,227 INFO
|
76 |
+
cfg.MODEL.BACKBONE_3D = edict()
|
77 |
+
2023-04-02 19:19:00,228 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet
|
78 |
+
2023-04-02 19:19:00,228 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
|
79 |
+
2023-04-02 19:19:00,229 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
|
80 |
+
2023-04-02 19:19:00,229 INFO
|
81 |
+
cfg.MODEL.DENSE_HEAD = edict()
|
82 |
+
2023-04-02 19:19:00,230 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
|
83 |
+
2023-04-02 19:19:00,230 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
|
84 |
+
2023-04-02 19:19:00,231 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
|
85 |
+
2023-04-02 19:19:00,231 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
|
86 |
+
2023-04-02 19:19:00,232 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
|
87 |
+
2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 18
|
88 |
+
2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 6
|
89 |
+
2023-04-02 19:19:00,233 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
|
90 |
+
2023-04-02 19:19:00,234 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: False
|
91 |
+
2023-04-02 19:19:00,234 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
|
92 |
+
2023-04-02 19:19:00,235 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
|
93 |
+
2023-04-02 19:19:00,235 INFO
|
94 |
+
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
|
95 |
+
2023-04-02 19:19:00,236 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
|
96 |
+
2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
|
97 |
+
2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
|
98 |
+
2023-04-02 19:19:00,237 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
|
99 |
+
2023-04-02 19:19:00,238 INFO
|
100 |
+
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
|
101 |
+
2023-04-02 19:19:00,239 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
|
102 |
+
2023-04-02 19:19:00,239 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
|
103 |
+
2023-04-02 19:19:00,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
|
104 |
+
2023-04-02 19:19:00,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 1.0
|
105 |
+
2023-04-02 19:19:00,240 INFO
|
106 |
+
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
|
107 |
+
2023-04-02 19:19:00,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
|
108 |
+
2023-04-02 19:19:00,242 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: False
|
109 |
+
2023-04-02 19:19:00,242 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
|
110 |
+
2023-04-02 19:19:00,243 INFO
|
111 |
+
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
|
112 |
+
2023-04-02 19:19:00,243 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
|
113 |
+
2023-04-02 19:19:00,244 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
|
114 |
+
2023-04-02 19:19:00,244 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
|
115 |
+
2023-04-02 19:19:00,245 INFO
|
116 |
+
cfg.MODEL.ROI_HEAD = edict()
|
117 |
+
2023-04-02 19:19:00,246 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
|
118 |
+
2023-04-02 19:19:00,246 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 18
|
119 |
+
2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
|
120 |
+
2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
|
121 |
+
2023-04-02 19:19:00,247 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
|
122 |
+
2023-04-02 19:19:00,248 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2
|
123 |
+
2023-04-02 19:19:00,248 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
|
124 |
+
2023-04-02 19:19:00,249 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 6
|
125 |
+
2023-04-02 19:19:00,249 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: False
|
126 |
+
2023-04-02 19:19:00,250 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
|
127 |
+
2023-04-02 19:19:00,250 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
|
128 |
+
2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
|
129 |
+
2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
|
130 |
+
2023-04-02 19:19:00,251 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
|
131 |
+
2023-04-02 19:19:00,252 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: False
|
132 |
+
2023-04-02 19:19:00,252 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
|
133 |
+
2023-04-02 19:19:00,253 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
|
134 |
+
2023-04-02 19:19:00,253 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
|
135 |
+
2023-04-02 19:19:00,254 INFO
|
136 |
+
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
|
137 |
+
2023-04-02 19:19:00,254 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
|
138 |
+
2023-04-02 19:19:00,254 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 1.0
|
139 |
+
2023-04-02 19:19:00,255 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
|
140 |
+
2023-04-02 19:19:00,255 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
141 |
+
2023-04-02 19:19:00,256 INFO
|
142 |
+
cfg.MODEL.POST_PROCESSING = edict()
|
143 |
+
2023-04-02 19:19:00,256 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
|
144 |
+
2023-04-02 19:19:00,257 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
|
145 |
+
2023-04-02 19:19:00,257 INFO
|
146 |
+
cfg.OPTIMIZATION = edict()
|
147 |
+
2023-04-02 19:19:00,258 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
|
148 |
+
2023-04-02 19:19:00,258 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1
|
149 |
+
2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW
|
150 |
+
2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.LR: 0.001
|
151 |
+
2023-04-02 19:19:00,259 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
|
152 |
+
2023-04-02 19:19:00,260 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [7, 9]
|
153 |
+
2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
|
154 |
+
2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
|
155 |
+
2023-04-02 19:19:00,261 INFO cfg.OPTIMIZATION.PCT_START: 0.4
|
156 |
+
2023-04-02 19:19:00,262 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
|
157 |
+
2023-04-02 19:19:00,262 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
|
158 |
+
2023-04-02 19:19:00,263 INFO cfg.OPTIMIZATION.LR_WARMUP: False
|
159 |
+
2023-04-02 19:19:00,263 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
|
160 |
+
2023-04-02 19:19:00,264 INFO cfg.TAG: CAGroup3D
|
161 |
+
2023-04-02 19:19:00,264 INFO cfg.EXP_GROUP_PATH: scannet_models
|
162 |
+
2023-04-02 19:19:00,295 INFO Loading SCANNET dataset
|
163 |
+
2023-04-02 19:19:00,413 INFO Total samples for SCANNET dataset: 1201
|
164 |
+
2023-04-02 19:19:03,525 INFO ==> Loading parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU
|
165 |
+
2023-04-02 19:19:04,589 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000
|
166 |
+
2023-04-02 19:19:04,732 INFO ==> Done (loaded 838/838)
|
167 |
+
2023-04-02 19:19:04,914 INFO ==> Loading parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU
|
168 |
+
2023-04-02 19:19:06,073 INFO ==> Loading optimizer parameters from checkpoint ../output/scannet_models/CAGroup3D/cagroup3d-win10-scannet-train-good/ckpt/checkpoint_epoch_8.pth to CPU
|
169 |
+
2023-04-02 19:19:06,413 INFO ==> Done
|
170 |
+
2023-04-02 19:19:06,797 INFO DistributedDataParallel(
|
171 |
+
(module): CAGroup3D(
|
172 |
+
(vfe): None
|
173 |
+
(backbone_3d): BiResNet(
|
174 |
+
(conv1): Sequential(
|
175 |
+
(0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
176 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
177 |
+
(2): MinkowskiReLU()
|
178 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
179 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
180 |
+
(5): MinkowskiReLU()
|
181 |
+
)
|
182 |
+
(relu): MinkowskiReLU()
|
183 |
+
(layer1): Sequential(
|
184 |
+
(0): BasicBlock(
|
185 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
186 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
187 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
188 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
189 |
+
(relu): MinkowskiReLU()
|
190 |
+
(downsample): Sequential(
|
191 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
192 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
193 |
+
)
|
194 |
+
)
|
195 |
+
(1): BasicBlock(
|
196 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
197 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
198 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
199 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
200 |
+
(relu): MinkowskiReLU()
|
201 |
+
)
|
202 |
+
)
|
203 |
+
(layer2): Sequential(
|
204 |
+
(0): BasicBlock(
|
205 |
+
(conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
206 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
207 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
208 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
209 |
+
(relu): MinkowskiReLU()
|
210 |
+
(downsample): Sequential(
|
211 |
+
(0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
212 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
213 |
+
)
|
214 |
+
)
|
215 |
+
(1): BasicBlock(
|
216 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
217 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
218 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
219 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
220 |
+
(relu): MinkowskiReLU()
|
221 |
+
)
|
222 |
+
)
|
223 |
+
(layer3): Sequential(
|
224 |
+
(0): BasicBlock(
|
225 |
+
(conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
226 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
227 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
228 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
229 |
+
(relu): MinkowskiReLU()
|
230 |
+
(downsample): Sequential(
|
231 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
232 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
233 |
+
)
|
234 |
+
)
|
235 |
+
(1): BasicBlock(
|
236 |
+
(conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
237 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
238 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
239 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
240 |
+
(relu): MinkowskiReLU()
|
241 |
+
)
|
242 |
+
)
|
243 |
+
(layer4): Sequential(
|
244 |
+
(0): BasicBlock(
|
245 |
+
(conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
246 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
247 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
248 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
249 |
+
(relu): MinkowskiReLU()
|
250 |
+
(downsample): Sequential(
|
251 |
+
(0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
252 |
+
(1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
253 |
+
)
|
254 |
+
)
|
255 |
+
(1): BasicBlock(
|
256 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
257 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
258 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
259 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
260 |
+
(relu): MinkowskiReLU()
|
261 |
+
)
|
262 |
+
)
|
263 |
+
(compression3): Sequential(
|
264 |
+
(0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
265 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
266 |
+
)
|
267 |
+
(compression4): Sequential(
|
268 |
+
(0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
269 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
270 |
+
)
|
271 |
+
(down3): Sequential(
|
272 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
273 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
274 |
+
)
|
275 |
+
(down4): Sequential(
|
276 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
277 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
278 |
+
(2): MinkowskiReLU()
|
279 |
+
(3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
280 |
+
(4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
281 |
+
)
|
282 |
+
(layer3_): Sequential(
|
283 |
+
(0): BasicBlock(
|
284 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
285 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
286 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
287 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
288 |
+
(relu): MinkowskiReLU()
|
289 |
+
)
|
290 |
+
(1): BasicBlock(
|
291 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
292 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
293 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
294 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
295 |
+
(relu): MinkowskiReLU()
|
296 |
+
)
|
297 |
+
)
|
298 |
+
(layer4_): Sequential(
|
299 |
+
(0): BasicBlock(
|
300 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
301 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
302 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
303 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
304 |
+
(relu): MinkowskiReLU()
|
305 |
+
)
|
306 |
+
(1): BasicBlock(
|
307 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
308 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
309 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
310 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
311 |
+
(relu): MinkowskiReLU()
|
312 |
+
)
|
313 |
+
)
|
314 |
+
(layer5_): Sequential(
|
315 |
+
(0): Bottleneck(
|
316 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
317 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
318 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
319 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
320 |
+
(conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
321 |
+
(norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
322 |
+
(relu): MinkowskiReLU()
|
323 |
+
(downsample): Sequential(
|
324 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
325 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
326 |
+
)
|
327 |
+
)
|
328 |
+
)
|
329 |
+
(layer5): Sequential(
|
330 |
+
(0): Bottleneck(
|
331 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
332 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
333 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
334 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
335 |
+
(conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
336 |
+
(norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
337 |
+
(relu): MinkowskiReLU()
|
338 |
+
(downsample): Sequential(
|
339 |
+
(0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
340 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
341 |
+
)
|
342 |
+
)
|
343 |
+
)
|
344 |
+
(spp): DAPPM(
|
345 |
+
(scale1): Sequential(
|
346 |
+
(0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
|
347 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
348 |
+
(2): MinkowskiReLU()
|
349 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
350 |
+
)
|
351 |
+
(scale2): Sequential(
|
352 |
+
(0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
|
353 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
354 |
+
(2): MinkowskiReLU()
|
355 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
356 |
+
)
|
357 |
+
(scale3): Sequential(
|
358 |
+
(0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
|
359 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
360 |
+
(2): MinkowskiReLU()
|
361 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
362 |
+
)
|
363 |
+
(scale4): Sequential(
|
364 |
+
(0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
|
365 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
366 |
+
(2): MinkowskiReLU()
|
367 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
368 |
+
)
|
369 |
+
(scale0): Sequential(
|
370 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
371 |
+
(1): MinkowskiReLU()
|
372 |
+
(2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
373 |
+
)
|
374 |
+
(process1): Sequential(
|
375 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
376 |
+
(1): MinkowskiReLU()
|
377 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
378 |
+
)
|
379 |
+
(process2): Sequential(
|
380 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
381 |
+
(1): MinkowskiReLU()
|
382 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
383 |
+
)
|
384 |
+
(process3): Sequential(
|
385 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
386 |
+
(1): MinkowskiReLU()
|
387 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
388 |
+
)
|
389 |
+
(process4): Sequential(
|
390 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
391 |
+
(1): MinkowskiReLU()
|
392 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
393 |
+
)
|
394 |
+
(compression): Sequential(
|
395 |
+
(0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
396 |
+
(1): MinkowskiReLU()
|
397 |
+
(2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
398 |
+
)
|
399 |
+
(shortcut): Sequential(
|
400 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
401 |
+
(1): MinkowskiReLU()
|
402 |
+
(2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
403 |
+
)
|
404 |
+
)
|
405 |
+
(out): Sequential(
|
406 |
+
(0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
|
407 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
408 |
+
(2): MinkowskiReLU()
|
409 |
+
(3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
410 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
411 |
+
(5): MinkowskiReLU()
|
412 |
+
)
|
413 |
+
)
|
414 |
+
(map_to_bev_module): None
|
415 |
+
(pfe): None
|
416 |
+
(backbone_2d): None
|
417 |
+
(dense_head): CAGroup3DHead(
|
418 |
+
(loss_centerness): CrossEntropy()
|
419 |
+
(loss_bbox): IoU3DLoss()
|
420 |
+
(loss_cls): FocalLoss()
|
421 |
+
(loss_sem): FocalLoss()
|
422 |
+
(loss_offset): SmoothL1Loss()
|
423 |
+
(offset_block): Sequential(
|
424 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
425 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
426 |
+
(2): MinkowskiELU()
|
427 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
428 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
429 |
+
(5): MinkowskiELU()
|
430 |
+
(6): MinkowskiConvolution(in=64, out=3, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
431 |
+
)
|
432 |
+
(feature_offset): Sequential(
|
433 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
434 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
435 |
+
(2): MinkowskiELU()
|
436 |
+
)
|
437 |
+
(semantic_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
438 |
+
(centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
439 |
+
(reg_conv): MinkowskiConvolution(in=64, out=6, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
440 |
+
(cls_conv): MinkowskiConvolution(in=64, out=18, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
441 |
+
(scales): ModuleList(
|
442 |
+
(0): Scale()
|
443 |
+
(1): Scale()
|
444 |
+
(2): Scale()
|
445 |
+
(3): Scale()
|
446 |
+
(4): Scale()
|
447 |
+
(5): Scale()
|
448 |
+
(6): Scale()
|
449 |
+
(7): Scale()
|
450 |
+
(8): Scale()
|
451 |
+
(9): Scale()
|
452 |
+
(10): Scale()
|
453 |
+
(11): Scale()
|
454 |
+
(12): Scale()
|
455 |
+
(13): Scale()
|
456 |
+
(14): Scale()
|
457 |
+
(15): Scale()
|
458 |
+
(16): Scale()
|
459 |
+
(17): Scale()
|
460 |
+
)
|
461 |
+
(cls_individual_out): ModuleList(
|
462 |
+
(0): Sequential(
|
463 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
464 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
465 |
+
(2): MinkowskiELU()
|
466 |
+
)
|
467 |
+
(1): Sequential(
|
468 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
469 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
470 |
+
(2): MinkowskiELU()
|
471 |
+
)
|
472 |
+
(2): Sequential(
|
473 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
474 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
475 |
+
(2): MinkowskiELU()
|
476 |
+
)
|
477 |
+
(3): Sequential(
|
478 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
479 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
480 |
+
(2): MinkowskiELU()
|
481 |
+
)
|
482 |
+
(4): Sequential(
|
483 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
484 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
485 |
+
(2): MinkowskiELU()
|
486 |
+
)
|
487 |
+
(5): Sequential(
|
488 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
489 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
490 |
+
(2): MinkowskiELU()
|
491 |
+
)
|
492 |
+
(6): Sequential(
|
493 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
494 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
495 |
+
(2): MinkowskiELU()
|
496 |
+
)
|
497 |
+
(7): Sequential(
|
498 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
499 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
500 |
+
(2): MinkowskiELU()
|
501 |
+
)
|
502 |
+
(8): Sequential(
|
503 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
504 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
505 |
+
(2): MinkowskiELU()
|
506 |
+
)
|
507 |
+
(9): Sequential(
|
508 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
509 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
510 |
+
(2): MinkowskiELU()
|
511 |
+
)
|
512 |
+
(10): Sequential(
|
513 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
514 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
515 |
+
(2): MinkowskiELU()
|
516 |
+
)
|
517 |
+
(11): Sequential(
|
518 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
519 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
520 |
+
(2): MinkowskiELU()
|
521 |
+
)
|
522 |
+
(12): Sequential(
|
523 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
524 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
525 |
+
(2): MinkowskiELU()
|
526 |
+
)
|
527 |
+
(13): Sequential(
|
528 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
529 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
530 |
+
(2): MinkowskiELU()
|
531 |
+
)
|
532 |
+
(14): Sequential(
|
533 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
534 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
535 |
+
(2): MinkowskiELU()
|
536 |
+
)
|
537 |
+
(15): Sequential(
|
538 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
539 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
540 |
+
(2): MinkowskiELU()
|
541 |
+
)
|
542 |
+
(16): Sequential(
|
543 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
544 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
545 |
+
(2): MinkowskiELU()
|
546 |
+
)
|
547 |
+
(17): Sequential(
|
548 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
549 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
550 |
+
(2): MinkowskiELU()
|
551 |
+
)
|
552 |
+
)
|
553 |
+
(cls_individual_up): ModuleList(
|
554 |
+
(0): ModuleList(
|
555 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
556 |
+
(1): Sequential(
|
557 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
558 |
+
(1): MinkowskiELU()
|
559 |
+
)
|
560 |
+
)
|
561 |
+
(1): ModuleList(
|
562 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
563 |
+
(1): Sequential(
|
564 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
565 |
+
(1): MinkowskiELU()
|
566 |
+
)
|
567 |
+
)
|
568 |
+
(2): ModuleList(
|
569 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
570 |
+
(1): Sequential(
|
571 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
572 |
+
(1): MinkowskiELU()
|
573 |
+
)
|
574 |
+
)
|
575 |
+
(3): ModuleList(
|
576 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
577 |
+
(1): Sequential(
|
578 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
579 |
+
(1): MinkowskiELU()
|
580 |
+
)
|
581 |
+
)
|
582 |
+
(4): ModuleList(
|
583 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
584 |
+
(1): Sequential(
|
585 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
586 |
+
(1): MinkowskiELU()
|
587 |
+
)
|
588 |
+
)
|
589 |
+
(5): ModuleList(
|
590 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
591 |
+
(1): Sequential(
|
592 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
593 |
+
(1): MinkowskiELU()
|
594 |
+
)
|
595 |
+
)
|
596 |
+
(6): ModuleList(
|
597 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
598 |
+
(1): Sequential(
|
599 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
600 |
+
(1): MinkowskiELU()
|
601 |
+
)
|
602 |
+
)
|
603 |
+
(7): ModuleList(
|
604 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
605 |
+
(1): Sequential(
|
606 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
607 |
+
(1): MinkowskiELU()
|
608 |
+
)
|
609 |
+
)
|
610 |
+
(8): ModuleList(
|
611 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
612 |
+
(1): Sequential(
|
613 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
614 |
+
(1): MinkowskiELU()
|
615 |
+
)
|
616 |
+
)
|
617 |
+
(9): ModuleList(
|
618 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
619 |
+
(1): Sequential(
|
620 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
621 |
+
(1): MinkowskiELU()
|
622 |
+
)
|
623 |
+
)
|
624 |
+
(10): ModuleList(
|
625 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
626 |
+
(1): Sequential(
|
627 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
628 |
+
(1): MinkowskiELU()
|
629 |
+
)
|
630 |
+
)
|
631 |
+
(11): ModuleList(
|
632 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
633 |
+
(1): Sequential(
|
634 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
635 |
+
(1): MinkowskiELU()
|
636 |
+
)
|
637 |
+
)
|
638 |
+
(12): ModuleList(
|
639 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
640 |
+
(1): Sequential(
|
641 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
642 |
+
(1): MinkowskiELU()
|
643 |
+
)
|
644 |
+
)
|
645 |
+
(13): ModuleList(
|
646 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
647 |
+
(1): Sequential(
|
648 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
649 |
+
(1): MinkowskiELU()
|
650 |
+
)
|
651 |
+
)
|
652 |
+
(14): ModuleList(
|
653 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
654 |
+
(1): Sequential(
|
655 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
656 |
+
(1): MinkowskiELU()
|
657 |
+
)
|
658 |
+
)
|
659 |
+
(15): ModuleList(
|
660 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
661 |
+
(1): Sequential(
|
662 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
663 |
+
(1): MinkowskiELU()
|
664 |
+
)
|
665 |
+
)
|
666 |
+
(16): ModuleList(
|
667 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
668 |
+
(1): Sequential(
|
669 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
670 |
+
(1): MinkowskiELU()
|
671 |
+
)
|
672 |
+
)
|
673 |
+
(17): ModuleList(
|
674 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
675 |
+
(1): Sequential(
|
676 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
677 |
+
(1): MinkowskiELU()
|
678 |
+
)
|
679 |
+
)
|
680 |
+
)
|
681 |
+
(cls_individual_fuse): ModuleList(
|
682 |
+
(0): Sequential(
|
683 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
684 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(2): MinkowskiELU()
|
686 |
+
)
|
687 |
+
(1): Sequential(
|
688 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
689 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
690 |
+
(2): MinkowskiELU()
|
691 |
+
)
|
692 |
+
(2): Sequential(
|
693 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
694 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
695 |
+
(2): MinkowskiELU()
|
696 |
+
)
|
697 |
+
(3): Sequential(
|
698 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
699 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
700 |
+
(2): MinkowskiELU()
|
701 |
+
)
|
702 |
+
(4): Sequential(
|
703 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
704 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
705 |
+
(2): MinkowskiELU()
|
706 |
+
)
|
707 |
+
(5): Sequential(
|
708 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
709 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
710 |
+
(2): MinkowskiELU()
|
711 |
+
)
|
712 |
+
(6): Sequential(
|
713 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
714 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
715 |
+
(2): MinkowskiELU()
|
716 |
+
)
|
717 |
+
(7): Sequential(
|
718 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
719 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
720 |
+
(2): MinkowskiELU()
|
721 |
+
)
|
722 |
+
(8): Sequential(
|
723 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
724 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
725 |
+
(2): MinkowskiELU()
|
726 |
+
)
|
727 |
+
(9): Sequential(
|
728 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
729 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
730 |
+
(2): MinkowskiELU()
|
731 |
+
)
|
732 |
+
(10): Sequential(
|
733 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
734 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
735 |
+
(2): MinkowskiELU()
|
736 |
+
)
|
737 |
+
(11): Sequential(
|
738 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
739 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
740 |
+
(2): MinkowskiELU()
|
741 |
+
)
|
742 |
+
(12): Sequential(
|
743 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
744 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
745 |
+
(2): MinkowskiELU()
|
746 |
+
)
|
747 |
+
(13): Sequential(
|
748 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
749 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
750 |
+
(2): MinkowskiELU()
|
751 |
+
)
|
752 |
+
(14): Sequential(
|
753 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
754 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
755 |
+
(2): MinkowskiELU()
|
756 |
+
)
|
757 |
+
(15): Sequential(
|
758 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
759 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
760 |
+
(2): MinkowskiELU()
|
761 |
+
)
|
762 |
+
(16): Sequential(
|
763 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
764 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
765 |
+
(2): MinkowskiELU()
|
766 |
+
)
|
767 |
+
(17): Sequential(
|
768 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
769 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
770 |
+
(2): MinkowskiELU()
|
771 |
+
)
|
772 |
+
)
|
773 |
+
(cls_individual_expand_out): ModuleList(
|
774 |
+
(0): Sequential(
|
775 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
776 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
777 |
+
(2): MinkowskiELU()
|
778 |
+
)
|
779 |
+
(1): Sequential(
|
780 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
781 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
782 |
+
(2): MinkowskiELU()
|
783 |
+
)
|
784 |
+
(2): Sequential(
|
785 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
786 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
787 |
+
(2): MinkowskiELU()
|
788 |
+
)
|
789 |
+
(3): Sequential(
|
790 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
791 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
792 |
+
(2): MinkowskiELU()
|
793 |
+
)
|
794 |
+
(4): Sequential(
|
795 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
796 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
797 |
+
(2): MinkowskiELU()
|
798 |
+
)
|
799 |
+
(5): Sequential(
|
800 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
801 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
802 |
+
(2): MinkowskiELU()
|
803 |
+
)
|
804 |
+
(6): Sequential(
|
805 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
806 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
807 |
+
(2): MinkowskiELU()
|
808 |
+
)
|
809 |
+
(7): Sequential(
|
810 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
811 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
812 |
+
(2): MinkowskiELU()
|
813 |
+
)
|
814 |
+
(8): Sequential(
|
815 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
816 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
817 |
+
(2): MinkowskiELU()
|
818 |
+
)
|
819 |
+
(9): Sequential(
|
820 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
821 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
822 |
+
(2): MinkowskiELU()
|
823 |
+
)
|
824 |
+
(10): Sequential(
|
825 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
826 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
827 |
+
(2): MinkowskiELU()
|
828 |
+
)
|
829 |
+
(11): Sequential(
|
830 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
831 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
832 |
+
(2): MinkowskiELU()
|
833 |
+
)
|
834 |
+
(12): Sequential(
|
835 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
836 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
837 |
+
(2): MinkowskiELU()
|
838 |
+
)
|
839 |
+
(13): Sequential(
|
840 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
841 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
842 |
+
(2): MinkowskiELU()
|
843 |
+
)
|
844 |
+
(14): Sequential(
|
845 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
846 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
847 |
+
(2): MinkowskiELU()
|
848 |
+
)
|
849 |
+
(15): Sequential(
|
850 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
851 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
852 |
+
(2): MinkowskiELU()
|
853 |
+
)
|
854 |
+
(16): Sequential(
|
855 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
856 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
857 |
+
(2): MinkowskiELU()
|
858 |
+
)
|
859 |
+
(17): Sequential(
|
860 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
861 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
862 |
+
(2): MinkowskiELU()
|
863 |
+
)
|
864 |
+
)
|
865 |
+
)
|
866 |
+
(point_head): None
|
867 |
+
(roi_head): CAGroup3DRoIHead(
|
868 |
+
(proposal_target_layer): ProposalTargetLayer()
|
869 |
+
(reg_loss_func): WeightedSmoothL1Loss()
|
870 |
+
(roi_grid_pool_layers): ModuleList(
|
871 |
+
(0): SimplePoolingLayer(
|
872 |
+
(grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
873 |
+
(grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
874 |
+
(grid_relu): MinkowskiELU()
|
875 |
+
(pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
|
876 |
+
(pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
877 |
+
)
|
878 |
+
)
|
879 |
+
(reg_fc_layers): Sequential(
|
880 |
+
(0): Linear(in_features=128, out_features=256, bias=False)
|
881 |
+
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
882 |
+
(2): ReLU()
|
883 |
+
(3): Dropout(p=0.3, inplace=False)
|
884 |
+
(4): Linear(in_features=256, out_features=256, bias=False)
|
885 |
+
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
886 |
+
(6): ReLU()
|
887 |
+
)
|
888 |
+
(reg_pred_layer): Linear(in_features=256, out_features=6, bias=True)
|
889 |
+
)
|
890 |
+
)
|
891 |
+
)
|
892 |
+
2023-04-02 19:19:06,861 INFO **********************Start training scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)**********************
|
893 |
+
2023-04-03 02:48:23,235 INFO Epoch [ 9][ 50]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6437654900550842, loss_bbox: 0.24313656240701675, loss_cls: 0.12552095234394073, loss_sem: 0.0908023527264595, loss_vote: 0.4054640585184097, one_stage_loss: 1.5086894202232362, rcnn_loss_reg: 0.18907397538423537, loss_two_stage: 0.18907397538423537,
|
894 |
+
2023-04-03 10:39:11,381 INFO Epoch [ 9][ 100]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6452190101146698, loss_bbox: 0.2506902211904526, loss_cls: 0.13058093473315238, loss_sem: 0.09085427075624466, loss_vote: 0.3957407087087631, one_stage_loss: 1.5130851411819457, rcnn_loss_reg: 0.18459385246038437, loss_two_stage: 0.18459385246038437,
|
895 |
+
2023-04-03 18:37:23,817 INFO Epoch [ 9][ 150]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6455395030975342, loss_bbox: 0.26197255998849867, loss_cls: 0.13516157254576683, loss_sem: 0.09203423753380775, loss_vote: 0.3918899363279343, one_stage_loss: 1.5265977954864502, rcnn_loss_reg: 0.19318852871656417, loss_two_stage: 0.19318852871656417,
|
896 |
+
2023-04-04 02:50:19,460 INFO Epoch [ 9][ 200]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6455828678607941, loss_bbox: 0.26617022305727006, loss_cls: 0.13564770326018333, loss_sem: 0.09159276977181435, loss_vote: 0.3895376515388489, one_stage_loss: 1.5285312223434449, rcnn_loss_reg: 0.19834407955408095, loss_two_stage: 0.19834407955408095,
|
897 |
+
2023-04-04 10:54:09,210 INFO Epoch [ 9][ 250]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6433031773567199, loss_bbox: 0.2684298923611641, loss_cls: 0.1351591469347477, loss_sem: 0.0898670071363449, loss_vote: 0.38588442504405973, one_stage_loss: 1.5226436424255372, rcnn_loss_reg: 0.19586090356111527, loss_two_stage: 0.19586090356111527,
|
898 |
+
2023-04-04 18:54:23,838 INFO Epoch [ 9][ 300]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6456489896774292, loss_bbox: 0.26939463675022124, loss_cls: 0.13399980276823042, loss_sem: 0.08941386982798577, loss_vote: 0.38932142794132235, one_stage_loss: 1.5277787280082702, rcnn_loss_reg: 0.19743700653314591, loss_two_stage: 0.19743700653314591,
|
899 |
+
2023-04-05 03:03:32,943 INFO Epoch [ 9][ 350]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6423018944263458, loss_bbox: 0.2762458199262619, loss_cls: 0.13613657861948014, loss_sem: 0.08952155798673629, loss_vote: 0.3827694195508957, one_stage_loss: 1.526975281238556, rcnn_loss_reg: 0.2028840947151184, loss_two_stage: 0.2028840947151184,
|
900 |
+
2023-04-05 11:14:13,601 INFO Epoch [ 9][ 400]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6456181585788727, loss_bbox: 0.27737378895282744, loss_cls: 0.1374327675998211, loss_sem: 0.08987010061740876, loss_vote: 0.3778589928150177, one_stage_loss: 1.5281538224220277, rcnn_loss_reg: 0.19922083646059036, loss_two_stage: 0.19922083646059036,
|
901 |
+
2023-04-05 19:27:24,824 INFO Epoch [ 9][ 450]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6425622916221618, loss_bbox: 0.27846161276102066, loss_cls: 0.1391485698521137, loss_sem: 0.09056971445679665, loss_vote: 0.3740858173370361, one_stage_loss: 1.524828016757965, rcnn_loss_reg: 0.2066230583190918, loss_two_stage: 0.2066230583190918,
|
902 |
+
2023-04-06 03:42:50,486 INFO Epoch [ 9][ 500]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6431539249420166, loss_bbox: 0.29076395750045775, loss_cls: 0.14162053808569908, loss_sem: 0.09268154501914978, loss_vote: 0.37324252247810363, one_stage_loss: 1.5414625024795532, rcnn_loss_reg: 0.21089414656162261, loss_two_stage: 0.21089414656162261,
|
903 |
+
2023-04-06 12:02:31,235 INFO Epoch [ 9][ 550]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6435322630405426, loss_bbox: 0.2865727955102921, loss_cls: 0.14131027206778526, loss_sem: 0.08974318355321884, loss_vote: 0.36962947726249695, one_stage_loss: 1.5307879900932313, rcnn_loss_reg: 0.21048259049654006, loss_two_stage: 0.21048259049654006,
|
904 |
+
2023-04-06 20:02:56,351 INFO Epoch [ 9][ 600]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6414503383636475, loss_bbox: 0.29402961790561677, loss_cls: 0.14405513793230057, loss_sem: 0.09276293635368348, loss_vote: 0.34642710983753205, one_stage_loss: 1.5187251472473144, rcnn_loss_reg: 0.21440828204154969, loss_two_stage: 0.21440828204154969,
|
905 |
+
2023-04-07 04:17:17,115 INFO Epoch [ 9][ 650]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6445023834705352, loss_bbox: 0.29507197201251983, loss_cls: 0.1420440413057804, loss_sem: 0.08918493255972862, loss_vote: 0.36039295852184294, one_stage_loss: 1.5311962819099427, rcnn_loss_reg: 0.21248085170984268, loss_two_stage: 0.21248085170984268,
|
906 |
+
2023-04-07 12:27:17,390 INFO Epoch [ 9][ 700]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6422169864177704, loss_bbox: 0.29913002490997315, loss_cls: 0.1449529528617859, loss_sem: 0.09117808878421783, loss_vote: 0.35617750346660615, one_stage_loss: 1.5336555647850036, rcnn_loss_reg: 0.21863267749547957, loss_two_stage: 0.21863267749547957,
|
907 |
+
2023-04-07 20:27:53,668 INFO Epoch [ 9][ 750]/[ 751] : lr: 1.000e-04, sem_thr: 0.05, loss_centerness: 0.6417906320095063, loss_bbox: 0.30550686359405516, loss_cls: 0.14678879588842392, loss_sem: 0.09153819352388382, loss_vote: 0.33501013278961184, one_stage_loss: 1.5206346249580383, rcnn_loss_reg: 0.21843280464410783, loss_two_stage: 0.21843280464410783,
|
908 |
+
2023-04-07 20:40:13,681 INFO **********************End training scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)**********************
|
909 |
+
|
910 |
+
|
911 |
+
|
912 |
+
2023-04-07 20:40:13,682 INFO **********************Start evaluation scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)**********************
|
913 |
+
2023-04-07 20:40:13,683 INFO Loading SCANNET dataset
|
914 |
+
2023-04-07 20:40:13,727 INFO Total samples for SCANNET dataset: 312
|
915 |
+
2023-04-07 20:40:13,734 INFO ==> Loading parameters from checkpoint C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet-train\ckpt\checkpoint_epoch_9.pth to CPU
|
916 |
+
2023-04-07 20:40:15,066 INFO ==> Checkpoint trained from version: pcdet+0.5.2+4ae8a35+pyde9d900
|
917 |
+
2023-04-07 20:40:15,285 INFO ==> Done (loaded 838/838)
|
918 |
+
2023-04-07 20:40:15,536 INFO *************** EPOCH 9 EVALUATION *****************
|
919 |
+
2023-04-07 23:42:31,883 INFO *************** Performance of EPOCH 9 *****************
|
920 |
+
2023-04-07 23:42:31,884 INFO Generate label finished(sec_per_example: 35.0515 second).
|
921 |
+
2023-04-07 23:42:31,884 INFO recall_roi_0.25: 0.000000
|
922 |
+
2023-04-07 23:42:31,885 INFO recall_rcnn_0.25: 0.000000
|
923 |
+
2023-04-07 23:42:31,885 INFO recall_roi_0.5: 0.000000
|
924 |
+
2023-04-07 23:42:31,886 INFO recall_rcnn_0.5: 0.000000
|
925 |
+
2023-04-07 23:42:31,886 INFO Average predicted number of objects(312 samples): 615.288
|
926 |
+
2023-04-07 23:42:50,866 INFO {'cabinet_AP_0.25': 0.48540377616882324, 'bed_AP_0.25': 0.8844786882400513, 'chair_AP_0.25': 0.9513316750526428, 'sofa_AP_0.25': 0.897523820400238, 'table_AP_0.25': 0.6726281046867371, 'door_AP_0.25': 0.6615963578224182, 'window_AP_0.25': 0.6129509806632996, 'bookshelf_AP_0.25': 0.6147690415382385, 'picture_AP_0.25': 0.3527411222457886, 'counter_AP_0.25': 0.6677877902984619, 'desk_AP_0.25': 0.8030293583869934, 'curtain_AP_0.25': 0.6958670020103455, 'refrigerator_AP_0.25': 0.5268049240112305, 'showercurtrain_AP_0.25': 0.7306337356567383, 'toilet_AP_0.25': 0.9988548159599304, 'sink_AP_0.25': 0.7495102286338806, 'bathtub_AP_0.25': 0.8837810754776001, 'garbagebin_AP_0.25': 0.6311063170433044, 'mAP_0.25': 0.7122666239738464, 'cabinet_rec_0.25': 0.9005376344086021, 'bed_rec_0.25': 0.9135802469135802, 'chair_rec_0.25': 0.9692982456140351, 'sofa_rec_0.25': 0.979381443298969, 'table_rec_0.25': 0.8514285714285714, 'door_rec_0.25': 0.9079229122055674, 'window_rec_0.25': 0.900709219858156, 'bookshelf_rec_0.25': 0.8701298701298701, 'picture_rec_0.25': 0.6576576576576577, 'counter_rec_0.25': 0.9423076923076923, 'desk_rec_0.25': 0.9606299212598425, 'curtain_rec_0.25': 0.8656716417910447, 'refrigerator_rec_0.25': 0.8947368421052632, 'showercurtrain_rec_0.25': 0.9642857142857143, 'toilet_rec_0.25': 1.0, 'sink_rec_0.25': 0.8367346938775511, 'bathtub_rec_0.25': 0.9032258064516129, 'garbagebin_rec_0.25': 0.8622641509433963, 'mAR_0.25': 0.8989167924742847, 'cabinet_AP_0.50': 0.3409128785133362, 'bed_AP_0.50': 0.8349310159683228, 'chair_AP_0.50': 0.8949430584907532, 'sofa_AP_0.50': 0.8081077337265015, 'table_AP_0.50': 0.6181142330169678, 'door_AP_0.50': 0.5156012773513794, 'window_AP_0.50': 0.31114932894706726, 'bookshelf_AP_0.50': 0.5378049612045288, 'picture_AP_0.50': 0.22183111310005188, 'counter_AP_0.50': 0.3777454197406769, 'desk_AP_0.50': 0.6232985854148865, 'curtain_AP_0.50': 0.40846431255340576, 'refrigerator_AP_0.50': 0.44400057196617126, 'showercurtrain_AP_0.50': 0.43062731623649597, 'toilet_AP_0.50': 0.9467570781707764, 'sink_AP_0.50': 0.5182515382766724, 'bathtub_AP_0.50': 0.8415195941925049, 'garbagebin_AP_0.50': 0.5481723546981812, 'mAP_0.50': 0.5679017901420593, 'cabinet_rec_0.50': 0.6935483870967742, 'bed_rec_0.50': 0.8641975308641975, 'chair_rec_0.50': 0.9232456140350878, 'sofa_rec_0.50': 0.9175257731958762, 'table_rec_0.50': 0.7571428571428571, 'door_rec_0.50': 0.734475374732334, 'window_rec_0.50': 0.5921985815602837, 'bookshelf_rec_0.50': 0.7662337662337663, 'picture_rec_0.50': 0.42342342342342343, 'counter_rec_0.50': 0.6153846153846154, 'desk_rec_0.50': 0.8346456692913385, 'curtain_rec_0.50': 0.6119402985074627, 'refrigerator_rec_0.50': 0.7719298245614035, 'showercurtrain_rec_0.50': 0.6071428571428571, 'toilet_rec_0.50': 0.9482758620689655, 'sink_rec_0.50': 0.6428571428571429, 'bathtub_rec_0.50': 0.8709677419354839, 'garbagebin_rec_0.50': 0.7169811320754716, 'mAR_0.50': 0.7384509140060744}
|
927 |
+
2023-04-07 23:42:50,872 INFO Result is save to C:\CITYU\CS5182\proj\CAGroup3D\output\scannet_models\CAGroup3D\cagroup3d-win10-scannet-train\eval\eval_with_train\epoch_9\val
|
928 |
+
2023-04-07 23:42:50,873 INFO ****************Evaluation done.*****************
|
929 |
+
2023-04-07 23:42:51,201 INFO Epoch 9 has been evaluated
|
930 |
+
2023-04-07 23:43:21,209 INFO **********************End evaluation scannet_models/CAGroup3D(cagroup3d-win10-scannet-train)**********************
|
tensorboard/events.out.tfevents.1680434340.DESKTOP-3FL13RB
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba189ca5210fae4f752fbce1ed9366602d11ab5f358baa8c7824126e48a2ec6e
|
3 |
+
size 507716
|