File size: 54,059 Bytes
5737713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
2023-04-02 18:47:11,122 INFO **********************Start logging********************** 2023-04-02 18:47:11,123 INFO CUDA_VISIBLE_DEVICES=ALL 2023-04-02 18:47:11,123 INFO total_batch_size: 16 2023-04-02 18:47:11,124 INFO cfg_file cfgs/sunrgbd_models/CAGroup3D.yaml 2023-04-02 18:47:11,125 INFO batch_size 16 2023-04-02 18:47:11,126 INFO epochs 13 2023-04-02 18:47:11,127 INFO workers 4 2023-04-02 18:47:11,128 INFO extra_tag cagroup3d-win10-sunrgbd-train 2023-04-02 18:47:11,130 INFO ckpt ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth 2023-04-02 18:47:11,132 INFO pretrained_model ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth 2023-04-02 18:47:11,133 INFO launcher pytorch 2023-04-02 18:47:11,134 INFO tcp_port 18888 2023-04-02 18:47:11,136 INFO sync_bn False 2023-04-02 18:47:11,138 INFO fix_random_seed True 2023-04-02 18:47:11,139 INFO ckpt_save_interval 1 2023-04-02 18:47:11,140 INFO max_ckpt_save_num 30 2023-04-02 18:47:11,141 INFO merge_all_iters_to_one_epoch False 2023-04-02 18:47:11,142 INFO set_cfgs None 2023-04-02 18:47:11,143 INFO max_waiting_mins 0 2023-04-02 18:47:11,144 INFO start_epoch 0 2023-04-02 18:47:11,145 INFO num_epochs_to_eval 0 2023-04-02 18:47:11,147 INFO save_to_file False 2023-04-02 18:47:11,148 INFO cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D 2023-04-02 18:47:11,148 INFO cfg.LOCAL_RANK: 0 2023-04-02 18:47:11,149 INFO cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub'] 2023-04-02 18:47:11,151 INFO cfg.DATA_CONFIG = edict() 2023-04-02 18:47:11,153 INFO cfg.DATA_CONFIG.DATASET: SunrgbdDataset 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0 2023-04-02 18:47:11,158 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10] 2023-04-02 18:47:11,159 INFO cfg.DATA_CONFIG.DATA_SPLIT = edict() 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val 2023-04-02 18:47:11,163 INFO cfg.DATA_CONFIG.REPEAT = edict() 2023-04-02 18:47:11,164 INFO cfg.DATA_CONFIG.REPEAT.train: 4 2023-04-02 18:47:11,165 INFO cfg.DATA_CONFIG.REPEAT.test: 1 2023-04-02 18:47:11,166 INFO cfg.DATA_CONFIG.INFO_PATH = edict() 2023-04-02 18:47:11,167 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl'] 2023-04-02 18:47:11,169 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl'] 2023-04-02 18:47:11,170 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points'] 2023-04-02 18:47:11,171 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True 2023-04-02 18:47:11,172 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict() 2023-04-02 18:47:11,174 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,175 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}] 2023-04-02 18:47:11,179 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict() 2023-04-02 18:47:11,180 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,182 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}] 2023-04-02 18:47:11,184 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR = edict() 2023-04-02 18:47:11,189 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,191 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}] 2023-04-02 18:47:11,192 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict() 2023-04-02 18:47:11,193 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding 2023-04-02 18:47:11,194 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 18:47:11,195 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 18:47:11,197 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}] 2023-04-02 18:47:11,201 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml 2023-04-02 18:47:11,202 INFO cfg.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,202 INFO cfg.N_CLASSES: 10 2023-04-02 18:47:11,203 INFO cfg.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,203 INFO cfg.MODEL = edict() 2023-04-02 18:47:11,205 INFO cfg.MODEL.NAME: CAGroup3D 2023-04-02 18:47:11,205 INFO cfg.MODEL.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,206 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05 2023-04-02 18:47:11,207 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02 2023-04-02 18:47:11,208 INFO cfg.MODEL.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,208 INFO cfg.MODEL.BACKBONE_3D = edict() 2023-04-02 18:47:11,210 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet 2023-04-02 18:47:11,211 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3 2023-04-02 18:47:11,215 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64 2023-04-02 18:47:11,215 INFO cfg.MODEL.DENSE_HEAD = edict() 2023-04-02 18:47:11,217 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512] 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,221 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 10 2023-04-02 18:47:11,223 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: True 2023-04-02 18:47:11,225 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False 2023-04-02 18:47:11,227 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3 2023-04-02 18:47:11,231 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER = edict() 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18 2023-04-02 18:47:11,236 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4 2023-04-02 18:47:11,238 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict() 2023-04-02 18:47:11,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum 2023-04-02 18:47:11,243 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2 2023-04-02 18:47:11,244 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict() 2023-04-02 18:47:11,246 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss 2023-04-02 18:47:11,247 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True 2023-04-02 18:47:11,249 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0 2023-04-02 18:47:11,250 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict() 2023-04-02 18:47:11,251 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01 2023-04-02 18:47:11,253 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000 2023-04-02 18:47:11,254 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5 2023-04-02 18:47:11,254 INFO cfg.MODEL.ROI_HEAD = edict() 2023-04-02 18:47:11,256 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead 2023-04-02 18:47:11,257 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10 2023-04-02 18:47:11,258 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3] 2023-04-02 18:47:11,260 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7 2023-04-02 18:47:11,262 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,263 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2 2023-04-02 18:47:11,264 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]] 2023-04-02 18:47:11,265 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 7 2023-04-02 18:47:11,267 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True 2023-04-02 18:47:11,269 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128 2023-04-02 18:47:11,271 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9 2023-04-02 18:47:11,272 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3 2023-04-02 18:47:11,275 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5 2023-04-02 18:47:11,276 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False 2023-04-02 18:47:11,279 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True 2023-04-02 18:47:11,280 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True 2023-04-02 18:47:11,282 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict() 2023-04-02 18:47:11,283 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0 2023-04-02 18:47:11,284 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5 2023-04-02 18:47:11,285 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0 2023-04-02 18:47:11,286 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 2023-04-02 18:47:11,288 INFO cfg.MODEL.POST_PROCESSING = edict() 2023-04-02 18:47:11,290 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5] 2023-04-02 18:47:11,292 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet 2023-04-02 18:47:11,293 INFO cfg.OPTIMIZATION = edict() 2023-04-02 18:47:11,295 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.LR: 0.001 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001 2023-04-02 18:47:11,299 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11] 2023-04-02 18:47:11,300 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1 2023-04-02 18:47:11,301 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10 2023-04-02 18:47:11,302 INFO cfg.OPTIMIZATION.PCT_START: 0.4 2023-04-02 18:47:11,303 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10 2023-04-02 18:47:11,306 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07 2023-04-02 18:47:11,307 INFO cfg.OPTIMIZATION.LR_WARMUP: False 2023-04-02 18:47:11,309 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1 2023-04-02 18:47:11,310 INFO cfg.TAG: CAGroup3D 2023-04-02 18:47:11,311 INFO cfg.EXP_GROUP_PATH: sunrgbd_models 2023-04-02 18:47:11,474 INFO Loading SUNRGBD dataset 2023-04-02 18:47:11,731 INFO Total samples for SUNRGBD dataset: 5285 2023-04-02 18:47:14,571 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:15,954 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2023-04-02 18:47:16,119 INFO ==> Done (loaded 638/638) 2023-04-02 18:47:16,286 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:17,535 INFO ==> Loading optimizer parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:17,866 INFO ==> Done 2023-04-02 18:47:18,267 INFO DistributedDataParallel( (module): CAGroup3D( (vfe): None (backbone_3d): BiResNet( (conv1): Sequential( (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) (relu): MinkowskiReLU() (layer1): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer2): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer3): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (compression3): Sequential( (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (compression4): Sequential( (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down3): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down4): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer3_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer5_): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (layer5): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (spp): DAPPM( (scale1): Sequential( (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale2): Sequential( (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale3): Sequential( (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale4): Sequential( (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale0): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process1): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process2): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process3): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process4): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (compression): Sequential( (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (shortcut): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) ) (out): Sequential( (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) ) (map_to_bev_module): None (pfe): None (backbone_2d): None (dense_head): CAGroup3DHead( (loss_centerness): CrossEntropy() (loss_bbox): IoU3DLoss() (loss_cls): FocalLoss() (loss_sem): FocalLoss() (loss_offset): SmoothL1Loss() (offset_block): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiELU() (6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (feature_offset): Sequential( (0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (scales): ModuleList( (0): Scale() (1): Scale() (2): Scale() (3): Scale() (4): Scale() (5): Scale() (6): Scale() (7): Scale() (8): Scale() (9): Scale() ) (cls_individual_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_up): ModuleList( (0): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (1): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (2): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (3): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (4): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (5): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (6): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (7): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (8): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (9): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) ) (cls_individual_fuse): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_expand_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) ) (point_head): None (roi_head): CAGroup3DRoIHead( (iou_loss_computer): IoU3DLoss() (proposal_target_layer): ProposalTargetLayer() (reg_loss_func): WeightedSmoothL1Loss() (roi_grid_pool_layers): ModuleList( (0): SimplePoolingLayer( (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (grid_relu): MinkowskiELU() (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1]) (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (reg_fc_layers): Sequential( (0): Linear(in_features=128, out_features=256, bias=False) (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() (3): Dropout(p=0.3, inplace=False) (4): Linear(in_features=256, out_features=256, bias=False) (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU() ) (reg_pred_layer): Linear(in_features=256, out_features=8, bias=True) ) ) ) 2023-04-02 18:47:18,392 INFO **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-02 21:02:53,692 INFO Epoch [13][ 50]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6623631048202515, loss_bbox: 0.35187224864959715, loss_cls: 0.18067386567592622, loss_sem: 0.27758967235684395, loss_vote: 0.11847812041640282, one_stage_loss: 1.5909770154953002, rcnn_loss_reg: 0.3226509618759155, rcnn_loss_iou: 0.37351417541503906, loss_two_stage: 0.6961651408672332, 2023-04-02 23:14:58,782 INFO Epoch [13][ 100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630406963825226, loss_bbox: 0.35230674386024474, loss_cls: 0.1816549304127693, loss_sem: 0.22412991568446158, loss_vote: 0.11678819626569747, one_stage_loss: 1.5379204940795899, rcnn_loss_reg: 0.3200619313120842, rcnn_loss_iou: 0.3759835082292557, loss_two_stage: 0.6960454404354095, 2023-04-03 01:31:22,578 INFO Epoch [13][ 150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641919124126434, loss_bbox: 0.34244911730289457, loss_cls: 0.17572991371154786, loss_sem: 0.164187930226326, loss_vote: 0.11165566861629486, one_stage_loss: 1.4582145309448242, rcnn_loss_reg: 0.3245995166897774, rcnn_loss_iou: 0.3702506846189499, loss_two_stage: 0.6948502039909363, 2023-04-03 03:15:28,156 INFO Epoch [13][ 200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661133303642273, loss_bbox: 0.3516665494441986, loss_cls: 0.1864103177189827, loss_sem: 0.19939401865005493, loss_vote: 0.12085840627551078, one_stage_loss: 1.5194626092910766, rcnn_loss_reg: 0.3308644261956215, rcnn_loss_iou: 0.37599210619926454, loss_two_stage: 0.7068565285205841, 2023-04-03 04:48:30,413 INFO Epoch [13][ 250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6646712601184845, loss_bbox: 0.34947874903678894, loss_cls: 0.18044402152299882, loss_sem: 0.14906390145421028, loss_vote: 0.11759307235479355, one_stage_loss: 1.4612509989738465, rcnn_loss_reg: 0.31861241459846495, rcnn_loss_iou: 0.3731016290187836, loss_two_stage: 0.6917140460014344, 2023-04-03 06:21:26,423 INFO Epoch [13][ 300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6643083465099334, loss_bbox: 0.3536418664455414, loss_cls: 0.17994892954826355, loss_sem: 0.1544986192882061, loss_vote: 0.11901766777038575, one_stage_loss: 1.4714154267311097, rcnn_loss_reg: 0.32731219202280043, rcnn_loss_iou: 0.376601088643074, loss_two_stage: 0.7039132845401764, 2023-04-03 07:54:18,231 INFO Epoch [13][ 350]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622652173042297, loss_bbox: 0.34778221607208254, loss_cls: 0.17725018173456192, loss_sem: 0.26385487884283065, loss_vote: 0.11609601065516471, one_stage_loss: 1.5672485136985779, rcnn_loss_reg: 0.3184669044613838, rcnn_loss_iou: 0.36683365106582644, loss_two_stage: 0.6853005504608154, 2023-04-03 09:30:14,314 INFO Epoch [13][ 400]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661707843542099, loss_bbox: 0.35418744444847106, loss_cls: 0.18439087867736817, loss_sem: 0.25267973288893697, loss_vote: 0.11465635925531387, one_stage_loss: 1.5676222562789917, rcnn_loss_reg: 0.32181145310401915, rcnn_loss_iou: 0.37672561407089233, loss_two_stage: 0.6985370683670044, 2023-04-03 11:03:56,627 INFO Epoch [13][ 450]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624130165576935, loss_bbox: 0.35507028639316557, loss_cls: 0.18141891568899154, loss_sem: 0.1587126612663269, loss_vote: 0.11347746297717094, one_stage_loss: 1.4710923361778259, rcnn_loss_reg: 0.3236926472187042, rcnn_loss_iou: 0.37554241478443146, loss_two_stage: 0.6992350625991821, 2023-04-03 12:35:12,815 INFO Epoch [13][ 500]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6629520893096924, loss_bbox: 0.3519792276620865, loss_cls: 0.17892935872077942, loss_sem: 0.17500929594039916, loss_vote: 0.11417005106806755, one_stage_loss: 1.483040030002594, rcnn_loss_reg: 0.3217777442932129, rcnn_loss_iou: 0.37734968066215513, loss_two_stage: 0.6991274237632752, 2023-04-03 14:10:09,972 INFO Epoch [13][ 550]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6637387633323669, loss_bbox: 0.34735734045505523, loss_cls: 0.18063713282346724, loss_sem: 0.13179368287324905, loss_vote: 0.12056573927402496, one_stage_loss: 1.4440926504135132, rcnn_loss_reg: 0.33059713900089266, rcnn_loss_iou: 0.37435609817504883, loss_two_stage: 0.7049532413482666, 2023-04-03 15:41:21,969 INFO Epoch [13][ 600]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.662292810678482, loss_bbox: 0.35720852434635164, loss_cls: 0.17849652022123336, loss_sem: 0.12923728227615355, loss_vote: 0.11629633039236069, one_stage_loss: 1.4435314631462097, rcnn_loss_reg: 0.3326093548536301, rcnn_loss_iou: 0.37626142144203184, loss_two_stage: 0.7088707709312438, 2023-04-03 17:11:28,683 INFO Epoch [13][ 650]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6618774938583374, loss_bbox: 0.35374693453311923, loss_cls: 0.18276749283075333, loss_sem: 0.144855744689703, loss_vote: 0.11687358900904656, one_stage_loss: 1.460121262073517, rcnn_loss_reg: 0.32241543173789977, rcnn_loss_iou: 0.3724362623691559, loss_two_stage: 0.6948516941070557, 2023-04-03 18:44:33,632 INFO Epoch [13][ 700]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6633472311496734, loss_bbox: 0.35507338523864745, loss_cls: 0.1834974604845047, loss_sem: 0.16129221200942992, loss_vote: 0.11933488368988038, one_stage_loss: 1.482545187473297, rcnn_loss_reg: 0.32722929924726485, rcnn_loss_iou: 0.37687767803668976, loss_two_stage: 0.7041069781780243, 2023-04-03 20:14:36,146 INFO Epoch [13][ 750]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6644761955738068, loss_bbox: 0.35398071110248563, loss_cls: 0.18030155092477798, loss_sem: 0.17029531091451644, loss_vote: 0.11823550701141357, one_stage_loss: 1.4872892904281616, rcnn_loss_reg: 0.33191990315914155, rcnn_loss_iou: 0.37786650359630586, loss_two_stage: 0.7097864115238189, 2023-04-03 21:43:57,721 INFO Epoch [13][ 800]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641488337516784, loss_bbox: 0.3623661398887634, loss_cls: 0.17759602785110473, loss_sem: 0.13985075324773788, loss_vote: 0.12048821434378625, one_stage_loss: 1.4644499826431274, rcnn_loss_reg: 0.32571767300367355, rcnn_loss_iou: 0.37867982625961305, loss_two_stage: 0.7043974995613098, 2023-04-03 23:14:42,693 INFO Epoch [13][ 850]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6634637904167175, loss_bbox: 0.3510202074050903, loss_cls: 0.1817261689901352, loss_sem: 0.17562781766057015, loss_vote: 0.11219386965036392, one_stage_loss: 1.4840318632125855, rcnn_loss_reg: 0.3145780658721924, rcnn_loss_iou: 0.3710771632194519, loss_two_stage: 0.6856552314758301, 2023-04-04 00:46:57,991 INFO Epoch [13][ 900]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6604310703277588, loss_bbox: 0.35609620809555054, loss_cls: 0.18157291144132615, loss_sem: 0.17424873754382134, loss_vote: 0.1169225138425827, one_stage_loss: 1.4892714548110961, rcnn_loss_reg: 0.3271025702357292, rcnn_loss_iou: 0.37567222356796265, loss_two_stage: 0.7027747964859009, 2023-04-04 02:46:38,860 INFO Epoch [13][ 950]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6638546955585479, loss_bbox: 0.34598992109298704, loss_cls: 0.17896713733673095, loss_sem: 0.14396111875772477, loss_vote: 0.11255239754915237, one_stage_loss: 1.445325255393982, rcnn_loss_reg: 0.3274132317304611, rcnn_loss_iou: 0.37157038986682894, loss_two_stage: 0.69898362159729, 2023-04-04 05:08:44,516 INFO Epoch [13][1000]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622758531570434, loss_bbox: 0.3549597650766373, loss_cls: 0.17880465477705001, loss_sem: 0.16847254008054732, loss_vote: 0.11574765816330909, one_stage_loss: 1.4802604627609253, rcnn_loss_reg: 0.32289525389671325, rcnn_loss_iou: 0.3747403818368912, loss_two_stage: 0.6976356363296509, 2023-04-04 07:33:09,320 INFO Epoch [13][1050]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6620133376121521, loss_bbox: 0.3527708554267883, loss_cls: 0.17823042571544648, loss_sem: 0.13636301800608636, loss_vote: 0.11551862224936485, one_stage_loss: 1.444896252155304, rcnn_loss_reg: 0.3306643870472908, rcnn_loss_iou: 0.38059409976005554, loss_two_stage: 0.7112584865093231, 2023-04-04 09:58:58,318 INFO Epoch [13][1100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630631291866302, loss_bbox: 0.34507942259311675, loss_cls: 0.1765292030572891, loss_sem: 0.17366553276777266, loss_vote: 0.11843317538499833, one_stage_loss: 1.476770441532135, rcnn_loss_reg: 0.32106285572052, rcnn_loss_iou: 0.3712770110368729, loss_two_stage: 0.6923398649692536, 2023-04-04 11:50:03,203 INFO Epoch [13][1150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624673461914062, loss_bbox: 0.35551845014095307, loss_cls: 0.18390144944190978, loss_sem: 0.1476328657567501, loss_vote: 0.11500328212976456, one_stage_loss: 1.4645233917236329, rcnn_loss_reg: 0.3294647446274757, rcnn_loss_iou: 0.3782592761516571, loss_two_stage: 0.7077240252494812, 2023-04-04 13:20:31,850 INFO Epoch [13][1200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.663930526971817, loss_bbox: 0.35358040988445283, loss_cls: 0.17962905526161194, loss_sem: 0.1480906042456627, loss_vote: 0.11691673502326011, one_stage_loss: 1.462147331237793, rcnn_loss_reg: 0.31809635043144224, rcnn_loss_iou: 0.3736869865655899, loss_two_stage: 0.6917833364009858, 2023-04-04 14:50:35,089 INFO Epoch [13][1250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6616610872745514, loss_bbox: 0.3473211169242859, loss_cls: 0.17929236128926276, loss_sem: 0.13846698969602586, loss_vote: 0.10878140345215798, one_stage_loss: 1.435522973537445, rcnn_loss_reg: 0.3105960166454315, rcnn_loss_iou: 0.36950829446315764, loss_two_stage: 0.6801043093204499, 2023-04-04 16:20:45,500 INFO Epoch [13][1300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6631780481338501, loss_bbox: 0.35142988979816436, loss_cls: 0.18354893177747728, loss_sem: 0.1891991038620472, loss_vote: 0.10815204933285713, one_stage_loss: 1.4955080199241637, rcnn_loss_reg: 0.3235346841812134, rcnn_loss_iou: 0.3715806418657303, loss_two_stage: 0.6951153266429901, 2023-04-04 16:58:46,259 INFO **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-04 16:58:46,261 INFO **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-04 16:58:46,262 INFO Loading SUNRGBD dataset 2023-04-04 16:58:46,521 INFO Total samples for SUNRGBD dataset: 5050 2023-04-04 16:58:46,528 INFO ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd-train\ckpt\checkpoint_epoch_13.pth to CPU 2023-04-04 16:58:47,139 INFO ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py9059037 2023-04-04 16:58:47,218 INFO ==> Done (loaded 638/638) 2023-04-04 16:58:47,318 INFO *************** EPOCH 13 EVALUATION ***************** |