File size: 54,059 Bytes
5737713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
2023-04-02 18:47:11,122   INFO  **********************Start logging**********************
2023-04-02 18:47:11,123   INFO  CUDA_VISIBLE_DEVICES=ALL
2023-04-02 18:47:11,123   INFO  total_batch_size: 16
2023-04-02 18:47:11,124   INFO  cfg_file         cfgs/sunrgbd_models/CAGroup3D.yaml
2023-04-02 18:47:11,125   INFO  batch_size       16
2023-04-02 18:47:11,126   INFO  epochs           13
2023-04-02 18:47:11,127   INFO  workers          4
2023-04-02 18:47:11,128   INFO  extra_tag        cagroup3d-win10-sunrgbd-train
2023-04-02 18:47:11,130   INFO  ckpt             ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth
2023-04-02 18:47:11,132   INFO  pretrained_model ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth
2023-04-02 18:47:11,133   INFO  launcher         pytorch
2023-04-02 18:47:11,134   INFO  tcp_port         18888
2023-04-02 18:47:11,136   INFO  sync_bn          False
2023-04-02 18:47:11,138   INFO  fix_random_seed  True
2023-04-02 18:47:11,139   INFO  ckpt_save_interval 1
2023-04-02 18:47:11,140   INFO  max_ckpt_save_num 30
2023-04-02 18:47:11,141   INFO  merge_all_iters_to_one_epoch False
2023-04-02 18:47:11,142   INFO  set_cfgs         None
2023-04-02 18:47:11,143   INFO  max_waiting_mins 0
2023-04-02 18:47:11,144   INFO  start_epoch      0
2023-04-02 18:47:11,145   INFO  num_epochs_to_eval 0
2023-04-02 18:47:11,147   INFO  save_to_file     False
2023-04-02 18:47:11,148   INFO  cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D
2023-04-02 18:47:11,148   INFO  cfg.LOCAL_RANK: 0
2023-04-02 18:47:11,149   INFO  cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub']
2023-04-02 18:47:11,151   INFO  
cfg.DATA_CONFIG = edict()
2023-04-02 18:47:11,153   INFO  cfg.DATA_CONFIG.DATASET: SunrgbdDataset
2023-04-02 18:47:11,155   INFO  cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd
2023-04-02 18:47:11,155   INFO  cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0
2023-04-02 18:47:11,158   INFO  cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
2023-04-02 18:47:11,159   INFO  
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2023-04-02 18:47:11,161   INFO  cfg.DATA_CONFIG.DATA_SPLIT.train: train
2023-04-02 18:47:11,161   INFO  cfg.DATA_CONFIG.DATA_SPLIT.test: val
2023-04-02 18:47:11,163   INFO  
cfg.DATA_CONFIG.REPEAT = edict()
2023-04-02 18:47:11,164   INFO  cfg.DATA_CONFIG.REPEAT.train: 4
2023-04-02 18:47:11,165   INFO  cfg.DATA_CONFIG.REPEAT.test: 1
2023-04-02 18:47:11,166   INFO  
cfg.DATA_CONFIG.INFO_PATH = edict()
2023-04-02 18:47:11,167   INFO  cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl']
2023-04-02 18:47:11,169   INFO  cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl']
2023-04-02 18:47:11,170   INFO  cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
2023-04-02 18:47:11,171   INFO  cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
2023-04-02 18:47:11,172   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
2023-04-02 18:47:11,174   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
2023-04-02 18:47:11,175   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
2023-04-02 18:47:11,179   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
2023-04-02 18:47:11,180   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
2023-04-02 18:47:11,182   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}]
2023-04-02 18:47:11,184   INFO  
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
2023-04-02 18:47:11,189   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2023-04-02 18:47:11,191   INFO  cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}]
2023-04-02 18:47:11,192   INFO  
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2023-04-02 18:47:11,193   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2023-04-02 18:47:11,194   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-04-02 18:47:11,195   INFO  cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
2023-04-02 18:47:11,197   INFO  cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}]
2023-04-02 18:47:11,201   INFO  cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
2023-04-02 18:47:11,202   INFO  cfg.VOXEL_SIZE: 0.02
2023-04-02 18:47:11,202   INFO  cfg.N_CLASSES: 10
2023-04-02 18:47:11,203   INFO  cfg.SEMANTIC_THR: 0.15
2023-04-02 18:47:11,203   INFO  
cfg.MODEL = edict()
2023-04-02 18:47:11,205   INFO  cfg.MODEL.NAME: CAGroup3D
2023-04-02 18:47:11,205   INFO  cfg.MODEL.VOXEL_SIZE: 0.02
2023-04-02 18:47:11,206   INFO  cfg.MODEL.SEMANTIC_MIN_THR: 0.05
2023-04-02 18:47:11,207   INFO  cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
2023-04-02 18:47:11,208   INFO  cfg.MODEL.SEMANTIC_THR: 0.15
2023-04-02 18:47:11,208   INFO  
cfg.MODEL.BACKBONE_3D = edict()
2023-04-02 18:47:11,210   INFO  cfg.MODEL.BACKBONE_3D.NAME: BiResNet
2023-04-02 18:47:11,211   INFO  cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
2023-04-02 18:47:11,215   INFO  cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
2023-04-02 18:47:11,215   INFO  
cfg.MODEL.DENSE_HEAD = edict()
2023-04-02 18:47:11,217   INFO  cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
2023-04-02 18:47:11,218   INFO  cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
2023-04-02 18:47:11,218   INFO  cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
2023-04-02 18:47:11,220   INFO  cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
2023-04-02 18:47:11,220   INFO  cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
2023-04-02 18:47:11,221   INFO  cfg.MODEL.DENSE_HEAD.N_CLASSES: 10
2023-04-02 18:47:11,223   INFO  cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8
2023-04-02 18:47:11,224   INFO  cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
2023-04-02 18:47:11,224   INFO  cfg.MODEL.DENSE_HEAD.WITH_YAW: True
2023-04-02 18:47:11,225   INFO  cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
2023-04-02 18:47:11,227   INFO  cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
2023-04-02 18:47:11,231   INFO  
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
2023-04-02 18:47:11,234   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
2023-04-02 18:47:11,234   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
2023-04-02 18:47:11,234   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
2023-04-02 18:47:11,236   INFO  cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
2023-04-02 18:47:11,238   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
2023-04-02 18:47:11,240   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
2023-04-02 18:47:11,241   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
2023-04-02 18:47:11,241   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
2023-04-02 18:47:11,243   INFO  cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2
2023-04-02 18:47:11,244   INFO  
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
2023-04-02 18:47:11,246   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
2023-04-02 18:47:11,247   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True
2023-04-02 18:47:11,249   INFO  cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
2023-04-02 18:47:11,250   INFO  
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
2023-04-02 18:47:11,251   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
2023-04-02 18:47:11,253   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
2023-04-02 18:47:11,254   INFO  cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
2023-04-02 18:47:11,254   INFO  
cfg.MODEL.ROI_HEAD = edict()
2023-04-02 18:47:11,256   INFO  cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
2023-04-02 18:47:11,257   INFO  cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10
2023-04-02 18:47:11,258   INFO  cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
2023-04-02 18:47:11,260   INFO  cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
2023-04-02 18:47:11,262   INFO  cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
2023-04-02 18:47:11,263   INFO  cfg.MODEL.ROI_HEAD.COORD_KEY: 2
2023-04-02 18:47:11,264   INFO  cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
2023-04-02 18:47:11,265   INFO  cfg.MODEL.ROI_HEAD.CODE_SIZE: 7
2023-04-02 18:47:11,267   INFO  cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True
2023-04-02 18:47:11,269   INFO  cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
2023-04-02 18:47:11,271   INFO  cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
2023-04-02 18:47:11,272   INFO  cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
2023-04-02 18:47:11,275   INFO  cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
2023-04-02 18:47:11,276   INFO  cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
2023-04-02 18:47:11,277   INFO  cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True
2023-04-02 18:47:11,277   INFO  cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
2023-04-02 18:47:11,279   INFO  cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
2023-04-02 18:47:11,280   INFO  cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
2023-04-02 18:47:11,282   INFO  
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
2023-04-02 18:47:11,283   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
2023-04-02 18:47:11,284   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5
2023-04-02 18:47:11,285   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
2023-04-02 18:47:11,286   INFO  cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2023-04-02 18:47:11,288   INFO  
cfg.MODEL.POST_PROCESSING = edict()
2023-04-02 18:47:11,290   INFO  cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
2023-04-02 18:47:11,292   INFO  cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
2023-04-02 18:47:11,293   INFO  
cfg.OPTIMIZATION = edict()
2023-04-02 18:47:11,295   INFO  cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
2023-04-02 18:47:11,296   INFO  cfg.OPTIMIZATION.NUM_EPOCHS: 1
2023-04-02 18:47:11,296   INFO  cfg.OPTIMIZATION.OPTIMIZER: adamW
2023-04-02 18:47:11,298   INFO  cfg.OPTIMIZATION.LR: 0.001
2023-04-02 18:47:11,298   INFO  cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
2023-04-02 18:47:11,299   INFO  cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11]
2023-04-02 18:47:11,300   INFO  cfg.OPTIMIZATION.LR_DECAY: 0.1
2023-04-02 18:47:11,301   INFO  cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2023-04-02 18:47:11,302   INFO  cfg.OPTIMIZATION.PCT_START: 0.4
2023-04-02 18:47:11,303   INFO  cfg.OPTIMIZATION.DIV_FACTOR: 10
2023-04-02 18:47:11,306   INFO  cfg.OPTIMIZATION.LR_CLIP: 1e-07
2023-04-02 18:47:11,307   INFO  cfg.OPTIMIZATION.LR_WARMUP: False
2023-04-02 18:47:11,309   INFO  cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2023-04-02 18:47:11,310   INFO  cfg.TAG: CAGroup3D
2023-04-02 18:47:11,311   INFO  cfg.EXP_GROUP_PATH: sunrgbd_models
2023-04-02 18:47:11,474   INFO  Loading SUNRGBD dataset
2023-04-02 18:47:11,731   INFO  Total samples for SUNRGBD dataset: 5285
2023-04-02 18:47:14,571   INFO  ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
2023-04-02 18:47:15,954   INFO  ==> Checkpoint trained from version: pcdet+0.5.2+0000000
2023-04-02 18:47:16,119   INFO  ==> Done (loaded 638/638)
2023-04-02 18:47:16,286   INFO  ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
2023-04-02 18:47:17,535   INFO  ==> Loading optimizer parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
2023-04-02 18:47:17,866   INFO  ==> Done
2023-04-02 18:47:18,267   INFO  DistributedDataParallel(
  (module): CAGroup3D(
    (vfe): None
    (backbone_3d): BiResNet(
      (conv1): Sequential(
        (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiReLU()
      )
      (relu): MinkowskiReLU()
      (layer1): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer2): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer3): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer4): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (compression3): Sequential(
        (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (compression4): Sequential(
        (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (down3): Sequential(
        (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (down4): Sequential(
        (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
      (layer3_): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer4_): Sequential(
        (0): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
        (1): BasicBlock(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
        )
      )
      (layer5_): Sequential(
        (0): Bottleneck(
          (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
      )
      (layer5): Sequential(
        (0): Bottleneck(
          (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
          (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): MinkowskiReLU()
          (downsample): Sequential(
            (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
            (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          )
        )
      )
      (spp): DAPPM(
        (scale1): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale2): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale3): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale4): Sequential(
          (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiReLU()
          (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (scale0): Sequential(
          (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process1): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process2): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process3): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (process4): Sequential(
          (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (compression): Sequential(
          (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
        (shortcut): Sequential(
          (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (1): MinkowskiReLU()
          (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        )
      )
      (out): Sequential(
        (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiReLU()
        (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiReLU()
      )
    )
    (map_to_bev_module): None
    (pfe): None
    (backbone_2d): None
    (dense_head): CAGroup3DHead(
      (loss_centerness): CrossEntropy()
      (loss_bbox): IoU3DLoss()
      (loss_cls): FocalLoss()
      (loss_sem): FocalLoss()
      (loss_offset): SmoothL1Loss()
      (offset_block): Sequential(
        (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiELU()
        (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
        (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (5): MinkowskiELU()
        (6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      )
      (feature_offset): Sequential(
        (0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
        (1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): MinkowskiELU()
      )
      (semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
      (scales): ModuleList(
        (0): Scale()
        (1): Scale()
        (2): Scale()
        (3): Scale()
        (4): Scale()
        (5): Scale()
        (6): Scale()
        (7): Scale()
        (8): Scale()
        (9): Scale()
      )
      (cls_individual_out): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
      (cls_individual_up): ModuleList(
        (0): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (1): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (2): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (3): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (4): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (5): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (6): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (7): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (8): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
        (9): ModuleList(
          (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
          (1): Sequential(
            (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (1): MinkowskiELU()
          )
        )
      )
      (cls_individual_fuse): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
      (cls_individual_expand_out): ModuleList(
        (0): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (1): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (2): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (3): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (4): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (5): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (6): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (7): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (8): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
        (9): Sequential(
          (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (2): MinkowskiELU()
        )
      )
    )
    (point_head): None
    (roi_head): CAGroup3DRoIHead(
      (iou_loss_computer): IoU3DLoss()
      (proposal_target_layer): ProposalTargetLayer()
      (reg_loss_func): WeightedSmoothL1Loss()
      (roi_grid_pool_layers): ModuleList(
        (0): SimplePoolingLayer(
          (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
          (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (grid_relu): MinkowskiELU()
          (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
          (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        )
      )
      (reg_fc_layers): Sequential(
        (0): Linear(in_features=128, out_features=256, bias=False)
        (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (2): ReLU()
        (3): Dropout(p=0.3, inplace=False)
        (4): Linear(in_features=256, out_features=256, bias=False)
        (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (6): ReLU()
      )
      (reg_pred_layer): Linear(in_features=256, out_features=8, bias=True)
    )
  )
)
2023-04-02 18:47:18,392   INFO  **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************
2023-04-02 21:02:53,692   INFO  Epoch [13][  50]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6623631048202515, loss_bbox: 0.35187224864959715, loss_cls: 0.18067386567592622, loss_sem: 0.27758967235684395, loss_vote: 0.11847812041640282, one_stage_loss: 1.5909770154953002, rcnn_loss_reg: 0.3226509618759155, rcnn_loss_iou: 0.37351417541503906, loss_two_stage: 0.6961651408672332, 
2023-04-02 23:14:58,782   INFO  Epoch [13][ 100]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630406963825226, loss_bbox: 0.35230674386024474, loss_cls: 0.1816549304127693, loss_sem: 0.22412991568446158, loss_vote: 0.11678819626569747, one_stage_loss: 1.5379204940795899, rcnn_loss_reg: 0.3200619313120842, rcnn_loss_iou: 0.3759835082292557, loss_two_stage: 0.6960454404354095, 
2023-04-03 01:31:22,578   INFO  Epoch [13][ 150]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641919124126434, loss_bbox: 0.34244911730289457, loss_cls: 0.17572991371154786, loss_sem: 0.164187930226326, loss_vote: 0.11165566861629486, one_stage_loss: 1.4582145309448242, rcnn_loss_reg: 0.3245995166897774, rcnn_loss_iou: 0.3702506846189499, loss_two_stage: 0.6948502039909363, 
2023-04-03 03:15:28,156   INFO  Epoch [13][ 200]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.661133303642273, loss_bbox: 0.3516665494441986, loss_cls: 0.1864103177189827, loss_sem: 0.19939401865005493, loss_vote: 0.12085840627551078, one_stage_loss: 1.5194626092910766, rcnn_loss_reg: 0.3308644261956215, rcnn_loss_iou: 0.37599210619926454, loss_two_stage: 0.7068565285205841, 
2023-04-03 04:48:30,413   INFO  Epoch [13][ 250]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6646712601184845, loss_bbox: 0.34947874903678894, loss_cls: 0.18044402152299882, loss_sem: 0.14906390145421028, loss_vote: 0.11759307235479355, one_stage_loss: 1.4612509989738465, rcnn_loss_reg: 0.31861241459846495, rcnn_loss_iou: 0.3731016290187836, loss_two_stage: 0.6917140460014344, 
2023-04-03 06:21:26,423   INFO  Epoch [13][ 300]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6643083465099334, loss_bbox: 0.3536418664455414, loss_cls: 0.17994892954826355, loss_sem: 0.1544986192882061, loss_vote: 0.11901766777038575, one_stage_loss: 1.4714154267311097, rcnn_loss_reg: 0.32731219202280043, rcnn_loss_iou: 0.376601088643074, loss_two_stage: 0.7039132845401764, 
2023-04-03 07:54:18,231   INFO  Epoch [13][ 350]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622652173042297, loss_bbox: 0.34778221607208254, loss_cls: 0.17725018173456192, loss_sem: 0.26385487884283065, loss_vote: 0.11609601065516471, one_stage_loss: 1.5672485136985779, rcnn_loss_reg: 0.3184669044613838, rcnn_loss_iou: 0.36683365106582644, loss_two_stage: 0.6853005504608154, 
2023-04-03 09:30:14,314   INFO  Epoch [13][ 400]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.661707843542099, loss_bbox: 0.35418744444847106, loss_cls: 0.18439087867736817, loss_sem: 0.25267973288893697, loss_vote: 0.11465635925531387, one_stage_loss: 1.5676222562789917, rcnn_loss_reg: 0.32181145310401915, rcnn_loss_iou: 0.37672561407089233, loss_two_stage: 0.6985370683670044, 
2023-04-03 11:03:56,627   INFO  Epoch [13][ 450]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624130165576935, loss_bbox: 0.35507028639316557, loss_cls: 0.18141891568899154, loss_sem: 0.1587126612663269, loss_vote: 0.11347746297717094, one_stage_loss: 1.4710923361778259, rcnn_loss_reg: 0.3236926472187042, rcnn_loss_iou: 0.37554241478443146, loss_two_stage: 0.6992350625991821, 
2023-04-03 12:35:12,815   INFO  Epoch [13][ 500]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6629520893096924, loss_bbox: 0.3519792276620865, loss_cls: 0.17892935872077942, loss_sem: 0.17500929594039916, loss_vote: 0.11417005106806755, one_stage_loss: 1.483040030002594, rcnn_loss_reg: 0.3217777442932129, rcnn_loss_iou: 0.37734968066215513, loss_two_stage: 0.6991274237632752, 
2023-04-03 14:10:09,972   INFO  Epoch [13][ 550]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6637387633323669, loss_bbox: 0.34735734045505523, loss_cls: 0.18063713282346724, loss_sem: 0.13179368287324905, loss_vote: 0.12056573927402496, one_stage_loss: 1.4440926504135132, rcnn_loss_reg: 0.33059713900089266, rcnn_loss_iou: 0.37435609817504883, loss_two_stage: 0.7049532413482666, 
2023-04-03 15:41:21,969   INFO  Epoch [13][ 600]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.662292810678482, loss_bbox: 0.35720852434635164, loss_cls: 0.17849652022123336, loss_sem: 0.12923728227615355, loss_vote: 0.11629633039236069, one_stage_loss: 1.4435314631462097, rcnn_loss_reg: 0.3326093548536301, rcnn_loss_iou: 0.37626142144203184, loss_two_stage: 0.7088707709312438, 
2023-04-03 17:11:28,683   INFO  Epoch [13][ 650]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6618774938583374, loss_bbox: 0.35374693453311923, loss_cls: 0.18276749283075333, loss_sem: 0.144855744689703, loss_vote: 0.11687358900904656, one_stage_loss: 1.460121262073517, rcnn_loss_reg: 0.32241543173789977, rcnn_loss_iou: 0.3724362623691559, loss_two_stage: 0.6948516941070557, 
2023-04-03 18:44:33,632   INFO  Epoch [13][ 700]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6633472311496734, loss_bbox: 0.35507338523864745, loss_cls: 0.1834974604845047, loss_sem: 0.16129221200942992, loss_vote: 0.11933488368988038, one_stage_loss: 1.482545187473297, rcnn_loss_reg: 0.32722929924726485, rcnn_loss_iou: 0.37687767803668976, loss_two_stage: 0.7041069781780243, 
2023-04-03 20:14:36,146   INFO  Epoch [13][ 750]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6644761955738068, loss_bbox: 0.35398071110248563, loss_cls: 0.18030155092477798, loss_sem: 0.17029531091451644, loss_vote: 0.11823550701141357, one_stage_loss: 1.4872892904281616, rcnn_loss_reg: 0.33191990315914155, rcnn_loss_iou: 0.37786650359630586, loss_two_stage: 0.7097864115238189, 
2023-04-03 21:43:57,721   INFO  Epoch [13][ 800]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641488337516784, loss_bbox: 0.3623661398887634, loss_cls: 0.17759602785110473, loss_sem: 0.13985075324773788, loss_vote: 0.12048821434378625, one_stage_loss: 1.4644499826431274, rcnn_loss_reg: 0.32571767300367355, rcnn_loss_iou: 0.37867982625961305, loss_two_stage: 0.7043974995613098, 
2023-04-03 23:14:42,693   INFO  Epoch [13][ 850]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6634637904167175, loss_bbox: 0.3510202074050903, loss_cls: 0.1817261689901352, loss_sem: 0.17562781766057015, loss_vote: 0.11219386965036392, one_stage_loss: 1.4840318632125855, rcnn_loss_reg: 0.3145780658721924, rcnn_loss_iou: 0.3710771632194519, loss_two_stage: 0.6856552314758301, 
2023-04-04 00:46:57,991   INFO  Epoch [13][ 900]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6604310703277588, loss_bbox: 0.35609620809555054, loss_cls: 0.18157291144132615, loss_sem: 0.17424873754382134, loss_vote: 0.1169225138425827, one_stage_loss: 1.4892714548110961, rcnn_loss_reg: 0.3271025702357292, rcnn_loss_iou: 0.37567222356796265, loss_two_stage: 0.7027747964859009, 
2023-04-04 02:46:38,860   INFO  Epoch [13][ 950]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6638546955585479, loss_bbox: 0.34598992109298704, loss_cls: 0.17896713733673095, loss_sem: 0.14396111875772477, loss_vote: 0.11255239754915237, one_stage_loss: 1.445325255393982, rcnn_loss_reg: 0.3274132317304611, rcnn_loss_iou: 0.37157038986682894, loss_two_stage: 0.69898362159729, 
2023-04-04 05:08:44,516   INFO  Epoch [13][1000]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622758531570434, loss_bbox: 0.3549597650766373, loss_cls: 0.17880465477705001, loss_sem: 0.16847254008054732, loss_vote: 0.11574765816330909, one_stage_loss: 1.4802604627609253, rcnn_loss_reg: 0.32289525389671325, rcnn_loss_iou: 0.3747403818368912, loss_two_stage: 0.6976356363296509, 
2023-04-04 07:33:09,320   INFO  Epoch [13][1050]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6620133376121521, loss_bbox: 0.3527708554267883, loss_cls: 0.17823042571544648, loss_sem: 0.13636301800608636, loss_vote: 0.11551862224936485, one_stage_loss: 1.444896252155304, rcnn_loss_reg: 0.3306643870472908, rcnn_loss_iou: 0.38059409976005554, loss_two_stage: 0.7112584865093231, 
2023-04-04 09:58:58,318   INFO  Epoch [13][1100]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630631291866302, loss_bbox: 0.34507942259311675, loss_cls: 0.1765292030572891, loss_sem: 0.17366553276777266, loss_vote: 0.11843317538499833, one_stage_loss: 1.476770441532135, rcnn_loss_reg: 0.32106285572052, rcnn_loss_iou: 0.3712770110368729, loss_two_stage: 0.6923398649692536, 
2023-04-04 11:50:03,203   INFO  Epoch [13][1150]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624673461914062, loss_bbox: 0.35551845014095307, loss_cls: 0.18390144944190978, loss_sem: 0.1476328657567501, loss_vote: 0.11500328212976456, one_stage_loss: 1.4645233917236329, rcnn_loss_reg: 0.3294647446274757, rcnn_loss_iou: 0.3782592761516571, loss_two_stage: 0.7077240252494812, 
2023-04-04 13:20:31,850   INFO  Epoch [13][1200]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.663930526971817, loss_bbox: 0.35358040988445283, loss_cls: 0.17962905526161194, loss_sem: 0.1480906042456627, loss_vote: 0.11691673502326011, one_stage_loss: 1.462147331237793, rcnn_loss_reg: 0.31809635043144224, rcnn_loss_iou: 0.3736869865655899, loss_two_stage: 0.6917833364009858, 
2023-04-04 14:50:35,089   INFO  Epoch [13][1250]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6616610872745514, loss_bbox: 0.3473211169242859, loss_cls: 0.17929236128926276, loss_sem: 0.13846698969602586, loss_vote: 0.10878140345215798, one_stage_loss: 1.435522973537445, rcnn_loss_reg: 0.3105960166454315, rcnn_loss_iou: 0.36950829446315764, loss_two_stage: 0.6801043093204499, 
2023-04-04 16:20:45,500   INFO  Epoch [13][1300]/[1322] : lr:  1.000e-05, sem_thr: 0.05, loss_centerness: 0.6631780481338501, loss_bbox: 0.35142988979816436, loss_cls: 0.18354893177747728, loss_sem: 0.1891991038620472, loss_vote: 0.10815204933285713, one_stage_loss: 1.4955080199241637, rcnn_loss_reg: 0.3235346841812134, rcnn_loss_iou: 0.3715806418657303, loss_two_stage: 0.6951153266429901, 
2023-04-04 16:58:46,259   INFO  **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************



2023-04-04 16:58:46,261   INFO  **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************
2023-04-04 16:58:46,262   INFO  Loading SUNRGBD dataset
2023-04-04 16:58:46,521   INFO  Total samples for SUNRGBD dataset: 5050
2023-04-04 16:58:46,528   INFO  ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd-train\ckpt\checkpoint_epoch_13.pth to CPU
2023-04-04 16:58:47,139   INFO  ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py9059037
2023-04-04 16:58:47,218   INFO  ==> Done (loaded 638/638)
2023-04-04 16:58:47,318   INFO  *************** EPOCH 13 EVALUATION *****************