6DammK9 commited on
Commit
5737713
1 Parent(s): e424bfa

Upload 6 files

Browse files
ckpt/checkpoint_epoch_13.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c95b812c9a7ab8a87e4c22365a35dd961625d8e554074e691b6ec6322a53817e
3
+ size 1174230627
eval/eval_with_train/tensorboard_val/events.out.tfevents.1680598726.DESKTOP-OROUQQR ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dc6edf41196b5f4293868f90693a60a48909b272d700583b661b95a27d73f8f
3
+ size 40
log_train_20230402-184711.txt ADDED
@@ -0,0 +1,746 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-04-02 18:47:11,122 INFO **********************Start logging**********************
2
+ 2023-04-02 18:47:11,123 INFO CUDA_VISIBLE_DEVICES=ALL
3
+ 2023-04-02 18:47:11,123 INFO total_batch_size: 16
4
+ 2023-04-02 18:47:11,124 INFO cfg_file cfgs/sunrgbd_models/CAGroup3D.yaml
5
+ 2023-04-02 18:47:11,125 INFO batch_size 16
6
+ 2023-04-02 18:47:11,126 INFO epochs 13
7
+ 2023-04-02 18:47:11,127 INFO workers 4
8
+ 2023-04-02 18:47:11,128 INFO extra_tag cagroup3d-win10-sunrgbd-train
9
+ 2023-04-02 18:47:11,130 INFO ckpt ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth
10
+ 2023-04-02 18:47:11,132 INFO pretrained_model ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth
11
+ 2023-04-02 18:47:11,133 INFO launcher pytorch
12
+ 2023-04-02 18:47:11,134 INFO tcp_port 18888
13
+ 2023-04-02 18:47:11,136 INFO sync_bn False
14
+ 2023-04-02 18:47:11,138 INFO fix_random_seed True
15
+ 2023-04-02 18:47:11,139 INFO ckpt_save_interval 1
16
+ 2023-04-02 18:47:11,140 INFO max_ckpt_save_num 30
17
+ 2023-04-02 18:47:11,141 INFO merge_all_iters_to_one_epoch False
18
+ 2023-04-02 18:47:11,142 INFO set_cfgs None
19
+ 2023-04-02 18:47:11,143 INFO max_waiting_mins 0
20
+ 2023-04-02 18:47:11,144 INFO start_epoch 0
21
+ 2023-04-02 18:47:11,145 INFO num_epochs_to_eval 0
22
+ 2023-04-02 18:47:11,147 INFO save_to_file False
23
+ 2023-04-02 18:47:11,148 INFO cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D
24
+ 2023-04-02 18:47:11,148 INFO cfg.LOCAL_RANK: 0
25
+ 2023-04-02 18:47:11,149 INFO cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub']
26
+ 2023-04-02 18:47:11,151 INFO
27
+ cfg.DATA_CONFIG = edict()
28
+ 2023-04-02 18:47:11,153 INFO cfg.DATA_CONFIG.DATASET: SunrgbdDataset
29
+ 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd
30
+ 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0
31
+ 2023-04-02 18:47:11,158 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
32
+ 2023-04-02 18:47:11,159 INFO
33
+ cfg.DATA_CONFIG.DATA_SPLIT = edict()
34
+ 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
35
+ 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
36
+ 2023-04-02 18:47:11,163 INFO
37
+ cfg.DATA_CONFIG.REPEAT = edict()
38
+ 2023-04-02 18:47:11,164 INFO cfg.DATA_CONFIG.REPEAT.train: 4
39
+ 2023-04-02 18:47:11,165 INFO cfg.DATA_CONFIG.REPEAT.test: 1
40
+ 2023-04-02 18:47:11,166 INFO
41
+ cfg.DATA_CONFIG.INFO_PATH = edict()
42
+ 2023-04-02 18:47:11,167 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl']
43
+ 2023-04-02 18:47:11,169 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl']
44
+ 2023-04-02 18:47:11,170 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
45
+ 2023-04-02 18:47:11,171 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
46
+ 2023-04-02 18:47:11,172 INFO
47
+ cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
48
+ 2023-04-02 18:47:11,174 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
49
+ 2023-04-02 18:47:11,175 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
50
+ 2023-04-02 18:47:11,179 INFO
51
+ cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
52
+ 2023-04-02 18:47:11,180 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
53
+ 2023-04-02 18:47:11,182 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}]
54
+ 2023-04-02 18:47:11,184 INFO
55
+ cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
56
+ 2023-04-02 18:47:11,189 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
57
+ 2023-04-02 18:47:11,191 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}]
58
+ 2023-04-02 18:47:11,192 INFO
59
+ cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
60
+ 2023-04-02 18:47:11,193 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
61
+ 2023-04-02 18:47:11,194 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
62
+ 2023-04-02 18:47:11,195 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
63
+ 2023-04-02 18:47:11,197 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}]
64
+ 2023-04-02 18:47:11,201 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
65
+ 2023-04-02 18:47:11,202 INFO cfg.VOXEL_SIZE: 0.02
66
+ 2023-04-02 18:47:11,202 INFO cfg.N_CLASSES: 10
67
+ 2023-04-02 18:47:11,203 INFO cfg.SEMANTIC_THR: 0.15
68
+ 2023-04-02 18:47:11,203 INFO
69
+ cfg.MODEL = edict()
70
+ 2023-04-02 18:47:11,205 INFO cfg.MODEL.NAME: CAGroup3D
71
+ 2023-04-02 18:47:11,205 INFO cfg.MODEL.VOXEL_SIZE: 0.02
72
+ 2023-04-02 18:47:11,206 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05
73
+ 2023-04-02 18:47:11,207 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
74
+ 2023-04-02 18:47:11,208 INFO cfg.MODEL.SEMANTIC_THR: 0.15
75
+ 2023-04-02 18:47:11,208 INFO
76
+ cfg.MODEL.BACKBONE_3D = edict()
77
+ 2023-04-02 18:47:11,210 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet
78
+ 2023-04-02 18:47:11,211 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
79
+ 2023-04-02 18:47:11,215 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
80
+ 2023-04-02 18:47:11,215 INFO
81
+ cfg.MODEL.DENSE_HEAD = edict()
82
+ 2023-04-02 18:47:11,217 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
83
+ 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
84
+ 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
85
+ 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
86
+ 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
87
+ 2023-04-02 18:47:11,221 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 10
88
+ 2023-04-02 18:47:11,223 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8
89
+ 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
90
+ 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: True
91
+ 2023-04-02 18:47:11,225 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
92
+ 2023-04-02 18:47:11,227 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
93
+ 2023-04-02 18:47:11,231 INFO
94
+ cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
95
+ 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
96
+ 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
97
+ 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
98
+ 2023-04-02 18:47:11,236 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
99
+ 2023-04-02 18:47:11,238 INFO
100
+ cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
101
+ 2023-04-02 18:47:11,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
102
+ 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
103
+ 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
104
+ 2023-04-02 18:47:11,243 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2
105
+ 2023-04-02 18:47:11,244 INFO
106
+ cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
107
+ 2023-04-02 18:47:11,246 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
108
+ 2023-04-02 18:47:11,247 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True
109
+ 2023-04-02 18:47:11,249 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
110
+ 2023-04-02 18:47:11,250 INFO
111
+ cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
112
+ 2023-04-02 18:47:11,251 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
113
+ 2023-04-02 18:47:11,253 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
114
+ 2023-04-02 18:47:11,254 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
115
+ 2023-04-02 18:47:11,254 INFO
116
+ cfg.MODEL.ROI_HEAD = edict()
117
+ 2023-04-02 18:47:11,256 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
118
+ 2023-04-02 18:47:11,257 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10
119
+ 2023-04-02 18:47:11,258 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
120
+ 2023-04-02 18:47:11,260 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
121
+ 2023-04-02 18:47:11,262 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
122
+ 2023-04-02 18:47:11,263 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2
123
+ 2023-04-02 18:47:11,264 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
124
+ 2023-04-02 18:47:11,265 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 7
125
+ 2023-04-02 18:47:11,267 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True
126
+ 2023-04-02 18:47:11,269 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
127
+ 2023-04-02 18:47:11,271 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
128
+ 2023-04-02 18:47:11,272 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
129
+ 2023-04-02 18:47:11,275 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
130
+ 2023-04-02 18:47:11,276 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
131
+ 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True
132
+ 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
133
+ 2023-04-02 18:47:11,279 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
134
+ 2023-04-02 18:47:11,280 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
135
+ 2023-04-02 18:47:11,282 INFO
136
+ cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
137
+ 2023-04-02 18:47:11,283 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
138
+ 2023-04-02 18:47:11,284 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5
139
+ 2023-04-02 18:47:11,285 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
140
+ 2023-04-02 18:47:11,286 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
141
+ 2023-04-02 18:47:11,288 INFO
142
+ cfg.MODEL.POST_PROCESSING = edict()
143
+ 2023-04-02 18:47:11,290 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
144
+ 2023-04-02 18:47:11,292 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
145
+ 2023-04-02 18:47:11,293 INFO
146
+ cfg.OPTIMIZATION = edict()
147
+ 2023-04-02 18:47:11,295 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
148
+ 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1
149
+ 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW
150
+ 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.LR: 0.001
151
+ 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
152
+ 2023-04-02 18:47:11,299 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11]
153
+ 2023-04-02 18:47:11,300 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
154
+ 2023-04-02 18:47:11,301 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
155
+ 2023-04-02 18:47:11,302 INFO cfg.OPTIMIZATION.PCT_START: 0.4
156
+ 2023-04-02 18:47:11,303 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
157
+ 2023-04-02 18:47:11,306 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
158
+ 2023-04-02 18:47:11,307 INFO cfg.OPTIMIZATION.LR_WARMUP: False
159
+ 2023-04-02 18:47:11,309 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
160
+ 2023-04-02 18:47:11,310 INFO cfg.TAG: CAGroup3D
161
+ 2023-04-02 18:47:11,311 INFO cfg.EXP_GROUP_PATH: sunrgbd_models
162
+ 2023-04-02 18:47:11,474 INFO Loading SUNRGBD dataset
163
+ 2023-04-02 18:47:11,731 INFO Total samples for SUNRGBD dataset: 5285
164
+ 2023-04-02 18:47:14,571 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
165
+ 2023-04-02 18:47:15,954 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000
166
+ 2023-04-02 18:47:16,119 INFO ==> Done (loaded 638/638)
167
+ 2023-04-02 18:47:16,286 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
168
+ 2023-04-02 18:47:17,535 INFO ==> Loading optimizer parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU
169
+ 2023-04-02 18:47:17,866 INFO ==> Done
170
+ 2023-04-02 18:47:18,267 INFO DistributedDataParallel(
171
+ (module): CAGroup3D(
172
+ (vfe): None
173
+ (backbone_3d): BiResNet(
174
+ (conv1): Sequential(
175
+ (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
176
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
177
+ (2): MinkowskiReLU()
178
+ (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
179
+ (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
180
+ (5): MinkowskiReLU()
181
+ )
182
+ (relu): MinkowskiReLU()
183
+ (layer1): Sequential(
184
+ (0): BasicBlock(
185
+ (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
186
+ (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
187
+ (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
188
+ (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
189
+ (relu): MinkowskiReLU()
190
+ (downsample): Sequential(
191
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
192
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
193
+ )
194
+ )
195
+ (1): BasicBlock(
196
+ (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
197
+ (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
198
+ (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
199
+ (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
200
+ (relu): MinkowskiReLU()
201
+ )
202
+ )
203
+ (layer2): Sequential(
204
+ (0): BasicBlock(
205
+ (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
206
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
207
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
208
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
209
+ (relu): MinkowskiReLU()
210
+ (downsample): Sequential(
211
+ (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
212
+ (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
213
+ )
214
+ )
215
+ (1): BasicBlock(
216
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
217
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
218
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
219
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
220
+ (relu): MinkowskiReLU()
221
+ )
222
+ )
223
+ (layer3): Sequential(
224
+ (0): BasicBlock(
225
+ (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
226
+ (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
227
+ (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
228
+ (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
229
+ (relu): MinkowskiReLU()
230
+ (downsample): Sequential(
231
+ (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
232
+ (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
233
+ )
234
+ )
235
+ (1): BasicBlock(
236
+ (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
237
+ (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
238
+ (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
239
+ (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
240
+ (relu): MinkowskiReLU()
241
+ )
242
+ )
243
+ (layer4): Sequential(
244
+ (0): BasicBlock(
245
+ (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
246
+ (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
247
+ (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
248
+ (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
249
+ (relu): MinkowskiReLU()
250
+ (downsample): Sequential(
251
+ (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
252
+ (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
253
+ )
254
+ )
255
+ (1): BasicBlock(
256
+ (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
257
+ (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
258
+ (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
259
+ (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
260
+ (relu): MinkowskiReLU()
261
+ )
262
+ )
263
+ (compression3): Sequential(
264
+ (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
265
+ (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
266
+ )
267
+ (compression4): Sequential(
268
+ (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
269
+ (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
270
+ )
271
+ (down3): Sequential(
272
+ (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
273
+ (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
274
+ )
275
+ (down4): Sequential(
276
+ (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
277
+ (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
278
+ (2): MinkowskiReLU()
279
+ (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
280
+ (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
281
+ )
282
+ (layer3_): Sequential(
283
+ (0): BasicBlock(
284
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
285
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
286
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
287
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
288
+ (relu): MinkowskiReLU()
289
+ )
290
+ (1): BasicBlock(
291
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
292
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
293
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
294
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
295
+ (relu): MinkowskiReLU()
296
+ )
297
+ )
298
+ (layer4_): Sequential(
299
+ (0): BasicBlock(
300
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
301
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
302
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
303
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
304
+ (relu): MinkowskiReLU()
305
+ )
306
+ (1): BasicBlock(
307
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
308
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
309
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
310
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
311
+ (relu): MinkowskiReLU()
312
+ )
313
+ )
314
+ (layer5_): Sequential(
315
+ (0): Bottleneck(
316
+ (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
317
+ (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
318
+ (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
319
+ (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
320
+ (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
321
+ (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
322
+ (relu): MinkowskiReLU()
323
+ (downsample): Sequential(
324
+ (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
325
+ (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
326
+ )
327
+ )
328
+ )
329
+ (layer5): Sequential(
330
+ (0): Bottleneck(
331
+ (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
332
+ (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
333
+ (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
334
+ (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
335
+ (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
336
+ (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
337
+ (relu): MinkowskiReLU()
338
+ (downsample): Sequential(
339
+ (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
340
+ (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
341
+ )
342
+ )
343
+ )
344
+ (spp): DAPPM(
345
+ (scale1): Sequential(
346
+ (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
347
+ (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
348
+ (2): MinkowskiReLU()
349
+ (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
350
+ )
351
+ (scale2): Sequential(
352
+ (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
353
+ (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
354
+ (2): MinkowskiReLU()
355
+ (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
356
+ )
357
+ (scale3): Sequential(
358
+ (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
359
+ (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
360
+ (2): MinkowskiReLU()
361
+ (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
362
+ )
363
+ (scale4): Sequential(
364
+ (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
365
+ (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
366
+ (2): MinkowskiReLU()
367
+ (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
368
+ )
369
+ (scale0): Sequential(
370
+ (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
371
+ (1): MinkowskiReLU()
372
+ (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
373
+ )
374
+ (process1): Sequential(
375
+ (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
376
+ (1): MinkowskiReLU()
377
+ (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
378
+ )
379
+ (process2): Sequential(
380
+ (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
381
+ (1): MinkowskiReLU()
382
+ (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
383
+ )
384
+ (process3): Sequential(
385
+ (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
386
+ (1): MinkowskiReLU()
387
+ (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
388
+ )
389
+ (process4): Sequential(
390
+ (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
391
+ (1): MinkowskiReLU()
392
+ (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
393
+ )
394
+ (compression): Sequential(
395
+ (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
396
+ (1): MinkowskiReLU()
397
+ (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
398
+ )
399
+ (shortcut): Sequential(
400
+ (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
401
+ (1): MinkowskiReLU()
402
+ (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
403
+ )
404
+ )
405
+ (out): Sequential(
406
+ (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
407
+ (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
408
+ (2): MinkowskiReLU()
409
+ (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
410
+ (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
411
+ (5): MinkowskiReLU()
412
+ )
413
+ )
414
+ (map_to_bev_module): None
415
+ (pfe): None
416
+ (backbone_2d): None
417
+ (dense_head): CAGroup3DHead(
418
+ (loss_centerness): CrossEntropy()
419
+ (loss_bbox): IoU3DLoss()
420
+ (loss_cls): FocalLoss()
421
+ (loss_sem): FocalLoss()
422
+ (loss_offset): SmoothL1Loss()
423
+ (offset_block): Sequential(
424
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
425
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
426
+ (2): MinkowskiELU()
427
+ (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
428
+ (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
429
+ (5): MinkowskiELU()
430
+ (6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
431
+ )
432
+ (feature_offset): Sequential(
433
+ (0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
434
+ (1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
435
+ (2): MinkowskiELU()
436
+ )
437
+ (semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
438
+ (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
439
+ (reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
440
+ (cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
441
+ (scales): ModuleList(
442
+ (0): Scale()
443
+ (1): Scale()
444
+ (2): Scale()
445
+ (3): Scale()
446
+ (4): Scale()
447
+ (5): Scale()
448
+ (6): Scale()
449
+ (7): Scale()
450
+ (8): Scale()
451
+ (9): Scale()
452
+ )
453
+ (cls_individual_out): ModuleList(
454
+ (0): Sequential(
455
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
456
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
457
+ (2): MinkowskiELU()
458
+ )
459
+ (1): Sequential(
460
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
461
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
462
+ (2): MinkowskiELU()
463
+ )
464
+ (2): Sequential(
465
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
466
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
467
+ (2): MinkowskiELU()
468
+ )
469
+ (3): Sequential(
470
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
471
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
472
+ (2): MinkowskiELU()
473
+ )
474
+ (4): Sequential(
475
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
476
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
477
+ (2): MinkowskiELU()
478
+ )
479
+ (5): Sequential(
480
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
481
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
482
+ (2): MinkowskiELU()
483
+ )
484
+ (6): Sequential(
485
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
486
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
487
+ (2): MinkowskiELU()
488
+ )
489
+ (7): Sequential(
490
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
491
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
492
+ (2): MinkowskiELU()
493
+ )
494
+ (8): Sequential(
495
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
496
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
497
+ (2): MinkowskiELU()
498
+ )
499
+ (9): Sequential(
500
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
501
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
502
+ (2): MinkowskiELU()
503
+ )
504
+ )
505
+ (cls_individual_up): ModuleList(
506
+ (0): ModuleList(
507
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
508
+ (1): Sequential(
509
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
510
+ (1): MinkowskiELU()
511
+ )
512
+ )
513
+ (1): ModuleList(
514
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
515
+ (1): Sequential(
516
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
517
+ (1): MinkowskiELU()
518
+ )
519
+ )
520
+ (2): ModuleList(
521
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
522
+ (1): Sequential(
523
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
524
+ (1): MinkowskiELU()
525
+ )
526
+ )
527
+ (3): ModuleList(
528
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
529
+ (1): Sequential(
530
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
531
+ (1): MinkowskiELU()
532
+ )
533
+ )
534
+ (4): ModuleList(
535
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
536
+ (1): Sequential(
537
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
538
+ (1): MinkowskiELU()
539
+ )
540
+ )
541
+ (5): ModuleList(
542
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
543
+ (1): Sequential(
544
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
545
+ (1): MinkowskiELU()
546
+ )
547
+ )
548
+ (6): ModuleList(
549
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
550
+ (1): Sequential(
551
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
552
+ (1): MinkowskiELU()
553
+ )
554
+ )
555
+ (7): ModuleList(
556
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
557
+ (1): Sequential(
558
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
559
+ (1): MinkowskiELU()
560
+ )
561
+ )
562
+ (8): ModuleList(
563
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
564
+ (1): Sequential(
565
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
566
+ (1): MinkowskiELU()
567
+ )
568
+ )
569
+ (9): ModuleList(
570
+ (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
571
+ (1): Sequential(
572
+ (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
573
+ (1): MinkowskiELU()
574
+ )
575
+ )
576
+ )
577
+ (cls_individual_fuse): ModuleList(
578
+ (0): Sequential(
579
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
580
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
581
+ (2): MinkowskiELU()
582
+ )
583
+ (1): Sequential(
584
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
585
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
586
+ (2): MinkowskiELU()
587
+ )
588
+ (2): Sequential(
589
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
590
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
591
+ (2): MinkowskiELU()
592
+ )
593
+ (3): Sequential(
594
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
595
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
596
+ (2): MinkowskiELU()
597
+ )
598
+ (4): Sequential(
599
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
600
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
601
+ (2): MinkowskiELU()
602
+ )
603
+ (5): Sequential(
604
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
605
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
606
+ (2): MinkowskiELU()
607
+ )
608
+ (6): Sequential(
609
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
610
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
611
+ (2): MinkowskiELU()
612
+ )
613
+ (7): Sequential(
614
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
615
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
616
+ (2): MinkowskiELU()
617
+ )
618
+ (8): Sequential(
619
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
620
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
621
+ (2): MinkowskiELU()
622
+ )
623
+ (9): Sequential(
624
+ (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
625
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
626
+ (2): MinkowskiELU()
627
+ )
628
+ )
629
+ (cls_individual_expand_out): ModuleList(
630
+ (0): Sequential(
631
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
632
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
633
+ (2): MinkowskiELU()
634
+ )
635
+ (1): Sequential(
636
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
637
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
638
+ (2): MinkowskiELU()
639
+ )
640
+ (2): Sequential(
641
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
642
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
643
+ (2): MinkowskiELU()
644
+ )
645
+ (3): Sequential(
646
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
647
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
648
+ (2): MinkowskiELU()
649
+ )
650
+ (4): Sequential(
651
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
652
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
653
+ (2): MinkowskiELU()
654
+ )
655
+ (5): Sequential(
656
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
657
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
658
+ (2): MinkowskiELU()
659
+ )
660
+ (6): Sequential(
661
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
662
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
663
+ (2): MinkowskiELU()
664
+ )
665
+ (7): Sequential(
666
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
667
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
668
+ (2): MinkowskiELU()
669
+ )
670
+ (8): Sequential(
671
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
672
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
673
+ (2): MinkowskiELU()
674
+ )
675
+ (9): Sequential(
676
+ (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
677
+ (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
678
+ (2): MinkowskiELU()
679
+ )
680
+ )
681
+ )
682
+ (point_head): None
683
+ (roi_head): CAGroup3DRoIHead(
684
+ (iou_loss_computer): IoU3DLoss()
685
+ (proposal_target_layer): ProposalTargetLayer()
686
+ (reg_loss_func): WeightedSmoothL1Loss()
687
+ (roi_grid_pool_layers): ModuleList(
688
+ (0): SimplePoolingLayer(
689
+ (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
690
+ (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
691
+ (grid_relu): MinkowskiELU()
692
+ (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
693
+ (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
694
+ )
695
+ )
696
+ (reg_fc_layers): Sequential(
697
+ (0): Linear(in_features=128, out_features=256, bias=False)
698
+ (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
699
+ (2): ReLU()
700
+ (3): Dropout(p=0.3, inplace=False)
701
+ (4): Linear(in_features=256, out_features=256, bias=False)
702
+ (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
703
+ (6): ReLU()
704
+ )
705
+ (reg_pred_layer): Linear(in_features=256, out_features=8, bias=True)
706
+ )
707
+ )
708
+ )
709
+ 2023-04-02 18:47:18,392 INFO **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************
710
+ 2023-04-02 21:02:53,692 INFO Epoch [13][ 50]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6623631048202515, loss_bbox: 0.35187224864959715, loss_cls: 0.18067386567592622, loss_sem: 0.27758967235684395, loss_vote: 0.11847812041640282, one_stage_loss: 1.5909770154953002, rcnn_loss_reg: 0.3226509618759155, rcnn_loss_iou: 0.37351417541503906, loss_two_stage: 0.6961651408672332,
711
+ 2023-04-02 23:14:58,782 INFO Epoch [13][ 100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630406963825226, loss_bbox: 0.35230674386024474, loss_cls: 0.1816549304127693, loss_sem: 0.22412991568446158, loss_vote: 0.11678819626569747, one_stage_loss: 1.5379204940795899, rcnn_loss_reg: 0.3200619313120842, rcnn_loss_iou: 0.3759835082292557, loss_two_stage: 0.6960454404354095,
712
+ 2023-04-03 01:31:22,578 INFO Epoch [13][ 150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641919124126434, loss_bbox: 0.34244911730289457, loss_cls: 0.17572991371154786, loss_sem: 0.164187930226326, loss_vote: 0.11165566861629486, one_stage_loss: 1.4582145309448242, rcnn_loss_reg: 0.3245995166897774, rcnn_loss_iou: 0.3702506846189499, loss_two_stage: 0.6948502039909363,
713
+ 2023-04-03 03:15:28,156 INFO Epoch [13][ 200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661133303642273, loss_bbox: 0.3516665494441986, loss_cls: 0.1864103177189827, loss_sem: 0.19939401865005493, loss_vote: 0.12085840627551078, one_stage_loss: 1.5194626092910766, rcnn_loss_reg: 0.3308644261956215, rcnn_loss_iou: 0.37599210619926454, loss_two_stage: 0.7068565285205841,
714
+ 2023-04-03 04:48:30,413 INFO Epoch [13][ 250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6646712601184845, loss_bbox: 0.34947874903678894, loss_cls: 0.18044402152299882, loss_sem: 0.14906390145421028, loss_vote: 0.11759307235479355, one_stage_loss: 1.4612509989738465, rcnn_loss_reg: 0.31861241459846495, rcnn_loss_iou: 0.3731016290187836, loss_two_stage: 0.6917140460014344,
715
+ 2023-04-03 06:21:26,423 INFO Epoch [13][ 300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6643083465099334, loss_bbox: 0.3536418664455414, loss_cls: 0.17994892954826355, loss_sem: 0.1544986192882061, loss_vote: 0.11901766777038575, one_stage_loss: 1.4714154267311097, rcnn_loss_reg: 0.32731219202280043, rcnn_loss_iou: 0.376601088643074, loss_two_stage: 0.7039132845401764,
716
+ 2023-04-03 07:54:18,231 INFO Epoch [13][ 350]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622652173042297, loss_bbox: 0.34778221607208254, loss_cls: 0.17725018173456192, loss_sem: 0.26385487884283065, loss_vote: 0.11609601065516471, one_stage_loss: 1.5672485136985779, rcnn_loss_reg: 0.3184669044613838, rcnn_loss_iou: 0.36683365106582644, loss_two_stage: 0.6853005504608154,
717
+ 2023-04-03 09:30:14,314 INFO Epoch [13][ 400]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661707843542099, loss_bbox: 0.35418744444847106, loss_cls: 0.18439087867736817, loss_sem: 0.25267973288893697, loss_vote: 0.11465635925531387, one_stage_loss: 1.5676222562789917, rcnn_loss_reg: 0.32181145310401915, rcnn_loss_iou: 0.37672561407089233, loss_two_stage: 0.6985370683670044,
718
+ 2023-04-03 11:03:56,627 INFO Epoch [13][ 450]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624130165576935, loss_bbox: 0.35507028639316557, loss_cls: 0.18141891568899154, loss_sem: 0.1587126612663269, loss_vote: 0.11347746297717094, one_stage_loss: 1.4710923361778259, rcnn_loss_reg: 0.3236926472187042, rcnn_loss_iou: 0.37554241478443146, loss_two_stage: 0.6992350625991821,
719
+ 2023-04-03 12:35:12,815 INFO Epoch [13][ 500]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6629520893096924, loss_bbox: 0.3519792276620865, loss_cls: 0.17892935872077942, loss_sem: 0.17500929594039916, loss_vote: 0.11417005106806755, one_stage_loss: 1.483040030002594, rcnn_loss_reg: 0.3217777442932129, rcnn_loss_iou: 0.37734968066215513, loss_two_stage: 0.6991274237632752,
720
+ 2023-04-03 14:10:09,972 INFO Epoch [13][ 550]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6637387633323669, loss_bbox: 0.34735734045505523, loss_cls: 0.18063713282346724, loss_sem: 0.13179368287324905, loss_vote: 0.12056573927402496, one_stage_loss: 1.4440926504135132, rcnn_loss_reg: 0.33059713900089266, rcnn_loss_iou: 0.37435609817504883, loss_two_stage: 0.7049532413482666,
721
+ 2023-04-03 15:41:21,969 INFO Epoch [13][ 600]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.662292810678482, loss_bbox: 0.35720852434635164, loss_cls: 0.17849652022123336, loss_sem: 0.12923728227615355, loss_vote: 0.11629633039236069, one_stage_loss: 1.4435314631462097, rcnn_loss_reg: 0.3326093548536301, rcnn_loss_iou: 0.37626142144203184, loss_two_stage: 0.7088707709312438,
722
+ 2023-04-03 17:11:28,683 INFO Epoch [13][ 650]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6618774938583374, loss_bbox: 0.35374693453311923, loss_cls: 0.18276749283075333, loss_sem: 0.144855744689703, loss_vote: 0.11687358900904656, one_stage_loss: 1.460121262073517, rcnn_loss_reg: 0.32241543173789977, rcnn_loss_iou: 0.3724362623691559, loss_two_stage: 0.6948516941070557,
723
+ 2023-04-03 18:44:33,632 INFO Epoch [13][ 700]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6633472311496734, loss_bbox: 0.35507338523864745, loss_cls: 0.1834974604845047, loss_sem: 0.16129221200942992, loss_vote: 0.11933488368988038, one_stage_loss: 1.482545187473297, rcnn_loss_reg: 0.32722929924726485, rcnn_loss_iou: 0.37687767803668976, loss_two_stage: 0.7041069781780243,
724
+ 2023-04-03 20:14:36,146 INFO Epoch [13][ 750]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6644761955738068, loss_bbox: 0.35398071110248563, loss_cls: 0.18030155092477798, loss_sem: 0.17029531091451644, loss_vote: 0.11823550701141357, one_stage_loss: 1.4872892904281616, rcnn_loss_reg: 0.33191990315914155, rcnn_loss_iou: 0.37786650359630586, loss_two_stage: 0.7097864115238189,
725
+ 2023-04-03 21:43:57,721 INFO Epoch [13][ 800]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641488337516784, loss_bbox: 0.3623661398887634, loss_cls: 0.17759602785110473, loss_sem: 0.13985075324773788, loss_vote: 0.12048821434378625, one_stage_loss: 1.4644499826431274, rcnn_loss_reg: 0.32571767300367355, rcnn_loss_iou: 0.37867982625961305, loss_two_stage: 0.7043974995613098,
726
+ 2023-04-03 23:14:42,693 INFO Epoch [13][ 850]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6634637904167175, loss_bbox: 0.3510202074050903, loss_cls: 0.1817261689901352, loss_sem: 0.17562781766057015, loss_vote: 0.11219386965036392, one_stage_loss: 1.4840318632125855, rcnn_loss_reg: 0.3145780658721924, rcnn_loss_iou: 0.3710771632194519, loss_two_stage: 0.6856552314758301,
727
+ 2023-04-04 00:46:57,991 INFO Epoch [13][ 900]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6604310703277588, loss_bbox: 0.35609620809555054, loss_cls: 0.18157291144132615, loss_sem: 0.17424873754382134, loss_vote: 0.1169225138425827, one_stage_loss: 1.4892714548110961, rcnn_loss_reg: 0.3271025702357292, rcnn_loss_iou: 0.37567222356796265, loss_two_stage: 0.7027747964859009,
728
+ 2023-04-04 02:46:38,860 INFO Epoch [13][ 950]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6638546955585479, loss_bbox: 0.34598992109298704, loss_cls: 0.17896713733673095, loss_sem: 0.14396111875772477, loss_vote: 0.11255239754915237, one_stage_loss: 1.445325255393982, rcnn_loss_reg: 0.3274132317304611, rcnn_loss_iou: 0.37157038986682894, loss_two_stage: 0.69898362159729,
729
+ 2023-04-04 05:08:44,516 INFO Epoch [13][1000]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622758531570434, loss_bbox: 0.3549597650766373, loss_cls: 0.17880465477705001, loss_sem: 0.16847254008054732, loss_vote: 0.11574765816330909, one_stage_loss: 1.4802604627609253, rcnn_loss_reg: 0.32289525389671325, rcnn_loss_iou: 0.3747403818368912, loss_two_stage: 0.6976356363296509,
730
+ 2023-04-04 07:33:09,320 INFO Epoch [13][1050]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6620133376121521, loss_bbox: 0.3527708554267883, loss_cls: 0.17823042571544648, loss_sem: 0.13636301800608636, loss_vote: 0.11551862224936485, one_stage_loss: 1.444896252155304, rcnn_loss_reg: 0.3306643870472908, rcnn_loss_iou: 0.38059409976005554, loss_two_stage: 0.7112584865093231,
731
+ 2023-04-04 09:58:58,318 INFO Epoch [13][1100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630631291866302, loss_bbox: 0.34507942259311675, loss_cls: 0.1765292030572891, loss_sem: 0.17366553276777266, loss_vote: 0.11843317538499833, one_stage_loss: 1.476770441532135, rcnn_loss_reg: 0.32106285572052, rcnn_loss_iou: 0.3712770110368729, loss_two_stage: 0.6923398649692536,
732
+ 2023-04-04 11:50:03,203 INFO Epoch [13][1150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624673461914062, loss_bbox: 0.35551845014095307, loss_cls: 0.18390144944190978, loss_sem: 0.1476328657567501, loss_vote: 0.11500328212976456, one_stage_loss: 1.4645233917236329, rcnn_loss_reg: 0.3294647446274757, rcnn_loss_iou: 0.3782592761516571, loss_two_stage: 0.7077240252494812,
733
+ 2023-04-04 13:20:31,850 INFO Epoch [13][1200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.663930526971817, loss_bbox: 0.35358040988445283, loss_cls: 0.17962905526161194, loss_sem: 0.1480906042456627, loss_vote: 0.11691673502326011, one_stage_loss: 1.462147331237793, rcnn_loss_reg: 0.31809635043144224, rcnn_loss_iou: 0.3736869865655899, loss_two_stage: 0.6917833364009858,
734
+ 2023-04-04 14:50:35,089 INFO Epoch [13][1250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6616610872745514, loss_bbox: 0.3473211169242859, loss_cls: 0.17929236128926276, loss_sem: 0.13846698969602586, loss_vote: 0.10878140345215798, one_stage_loss: 1.435522973537445, rcnn_loss_reg: 0.3105960166454315, rcnn_loss_iou: 0.36950829446315764, loss_two_stage: 0.6801043093204499,
735
+ 2023-04-04 16:20:45,500 INFO Epoch [13][1300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6631780481338501, loss_bbox: 0.35142988979816436, loss_cls: 0.18354893177747728, loss_sem: 0.1891991038620472, loss_vote: 0.10815204933285713, one_stage_loss: 1.4955080199241637, rcnn_loss_reg: 0.3235346841812134, rcnn_loss_iou: 0.3715806418657303, loss_two_stage: 0.6951153266429901,
736
+ 2023-04-04 16:58:46,259 INFO **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************
737
+
738
+
739
+
740
+ 2023-04-04 16:58:46,261 INFO **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)**********************
741
+ 2023-04-04 16:58:46,262 INFO Loading SUNRGBD dataset
742
+ 2023-04-04 16:58:46,521 INFO Total samples for SUNRGBD dataset: 5050
743
+ 2023-04-04 16:58:46,528 INFO ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd-train\ckpt\checkpoint_epoch_13.pth to CPU
744
+ 2023-04-04 16:58:47,139 INFO ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py9059037
745
+ 2023-04-04 16:58:47,218 INFO ==> Done (loaded 638/638)
746
+ 2023-04-04 16:58:47,318 INFO *************** EPOCH 13 EVALUATION *****************
tensorboard/events.out.tfevents.1680432431.DESKTOP-OROUQQR ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8757b023e44e386daf0bc5afd1f9b84c9791075e8211029a490618e3a8b3edbe
3
+ size 980826