Upload 6 files
Browse files
CAGroup3D.yaml
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser',
|
2 |
+
'night_stand', 'bookshelf', 'bathtub']
|
3 |
+
|
4 |
+
DATA_CONFIG:
|
5 |
+
_BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
|
6 |
+
|
7 |
+
VOXEL_SIZE: &VOXEL_SIZE 0.02
|
8 |
+
N_CLASSES: &N_CLASSES 10
|
9 |
+
SEMANTIC_THR: &SEMANTIC_THR 0.15
|
10 |
+
|
11 |
+
MODEL:
|
12 |
+
NAME: CAGroup3D
|
13 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
14 |
+
SEMANTIC_MIN_THR: 0.05
|
15 |
+
SEMANTIC_ITER_VALUE: 0.02
|
16 |
+
SEMANTIC_THR: *SEMANTIC_THR
|
17 |
+
BACKBONE_3D:
|
18 |
+
NAME: BiResNet
|
19 |
+
IN_CHANNELS: 3
|
20 |
+
OUT_CHANNELS: 64
|
21 |
+
|
22 |
+
DENSE_HEAD:
|
23 |
+
NAME: CAGroup3DHead
|
24 |
+
IN_CHANNELS: [64, 128, 256, 512]
|
25 |
+
OUT_CHANNELS: 64
|
26 |
+
SEMANTIC_THR: *SEMANTIC_THR
|
27 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
28 |
+
N_CLASSES: *N_CLASSES
|
29 |
+
N_REG_OUTS: 8
|
30 |
+
CLS_KERNEL: 9
|
31 |
+
WITH_YAW: True
|
32 |
+
USE_SEM_SCORE: False
|
33 |
+
EXPAND_RATIO: 3
|
34 |
+
ASSIGNER:
|
35 |
+
NAME: CAGroup3DAssigner
|
36 |
+
LIMIT: 27
|
37 |
+
TOPK: 18
|
38 |
+
N_SCALES: 4
|
39 |
+
LOSS_OFFSET:
|
40 |
+
NAME: SmoothL1Loss
|
41 |
+
BETA: 0.04
|
42 |
+
REDUCTION: sum
|
43 |
+
LOSS_WEIGHT: 0.2
|
44 |
+
LOSS_BBOX:
|
45 |
+
NAME: IoU3DLoss
|
46 |
+
WITH_YAW: True
|
47 |
+
LOSS_WEIGHT: 1.0
|
48 |
+
NMS_CONFIG:
|
49 |
+
SCORE_THR: 0.01
|
50 |
+
NMS_PRE: 1000
|
51 |
+
IOU_THR: 0.5
|
52 |
+
|
53 |
+
ROI_HEAD:
|
54 |
+
NAME: CAGroup3DRoIHead
|
55 |
+
NUM_CLASSES: *N_CLASSES
|
56 |
+
MIDDLE_FEATURE_SOURCE: [3]
|
57 |
+
GRID_SIZE: 7
|
58 |
+
VOXEL_SIZE: *VOXEL_SIZE
|
59 |
+
COORD_KEY: 2
|
60 |
+
MLPS: [[64,128,128]]
|
61 |
+
CODE_SIZE: 7
|
62 |
+
ENCODE_SINCOS: True
|
63 |
+
ROI_PER_IMAGE: 128
|
64 |
+
ROI_FG_RATIO: 0.9
|
65 |
+
REG_FG_THRESH: 0.3
|
66 |
+
ROI_CONV_KERNEL: 5
|
67 |
+
ENLARGE_RATIO: False
|
68 |
+
USE_IOU_LOSS: True
|
69 |
+
USE_GRID_OFFSET: False
|
70 |
+
USE_SIMPLE_POOLING: True
|
71 |
+
USE_CENTER_POOLING: True
|
72 |
+
LOSS_WEIGHTS:
|
73 |
+
RCNN_CLS_WEIGHT: 1.0 # no use
|
74 |
+
RCNN_REG_WEIGHT: 0.5
|
75 |
+
RCNN_IOU_WEIGHT: 1.0
|
76 |
+
CODE_WEIGHT: [1., 1., 1., 1., 1., 1., 1., 1.]
|
77 |
+
|
78 |
+
POST_PROCESSING:
|
79 |
+
RECALL_THRESH_LIST: [0.25, 0.5]
|
80 |
+
EVAL_METRIC: scannet
|
81 |
+
|
82 |
+
OPTIMIZATION:
|
83 |
+
BATCH_SIZE_PER_GPU: 16 # 4x4 or 8x2
|
84 |
+
NUM_EPOCHS: 1 #14
|
85 |
+
|
86 |
+
OPTIMIZER: adamW
|
87 |
+
LR: 0.001
|
88 |
+
WEIGHT_DECAY: 0.0001
|
89 |
+
DECAY_STEP_LIST: [8, 11]
|
90 |
+
LR_DECAY: 0.1
|
91 |
+
GRAD_NORM_CLIP: 10
|
92 |
+
|
93 |
+
# no use
|
94 |
+
PCT_START: 0.4
|
95 |
+
DIV_FACTOR: 10
|
96 |
+
LR_CLIP: 0.0000001
|
97 |
+
|
98 |
+
LR_WARMUP: False
|
99 |
+
WARMUP_EPOCH: 1
|
100 |
+
|
101 |
+
|
ckpt/checkpoint_epoch_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55bd1a6ec18bbe0fe2468969029108aa060ed302d821d3d134d9c0c4c7fcd453
|
3 |
+
size 1120252391
|
eval/eval_with_train/eval_list_val.txt
ADDED
File without changes
|
eval/eval_with_train/tensorboard_val/events.out.tfevents.1679930777.DESKTOP-OROUQQR
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76615c733dc754a87d0cda644e03560d5473d615fb42918246b6559fbbd4b755
|
3 |
+
size 40
|
log_train_20230326-111334.txt
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-03-26 11:13:34,846 INFO **********************Start logging**********************
|
2 |
+
2023-03-26 11:13:34,846 INFO CUDA_VISIBLE_DEVICES=ALL
|
3 |
+
2023-03-26 11:13:34,847 INFO total_batch_size: 16
|
4 |
+
2023-03-26 11:13:34,847 INFO cfg_file cfgs/sunrgbd_models/CAGroup3D.yaml
|
5 |
+
2023-03-26 11:13:34,848 INFO batch_size 16
|
6 |
+
2023-03-26 11:13:34,849 INFO epochs 1
|
7 |
+
2023-03-26 11:13:34,850 INFO workers 4
|
8 |
+
2023-03-26 11:13:34,851 INFO extra_tag cagroup3d-win10-sunrgbd
|
9 |
+
2023-03-26 11:13:34,851 INFO ckpt None
|
10 |
+
2023-03-26 11:13:34,852 INFO pretrained_model None
|
11 |
+
2023-03-26 11:13:34,853 INFO launcher pytorch
|
12 |
+
2023-03-26 11:13:34,854 INFO tcp_port 18888
|
13 |
+
2023-03-26 11:13:34,854 INFO sync_bn False
|
14 |
+
2023-03-26 11:13:34,855 INFO fix_random_seed True
|
15 |
+
2023-03-26 11:13:34,856 INFO ckpt_save_interval 1
|
16 |
+
2023-03-26 11:13:34,856 INFO max_ckpt_save_num 30
|
17 |
+
2023-03-26 11:13:34,857 INFO merge_all_iters_to_one_epoch False
|
18 |
+
2023-03-26 11:13:34,858 INFO set_cfgs None
|
19 |
+
2023-03-26 11:13:34,859 INFO max_waiting_mins 0
|
20 |
+
2023-03-26 11:13:34,859 INFO start_epoch 0
|
21 |
+
2023-03-26 11:13:34,860 INFO num_epochs_to_eval 0
|
22 |
+
2023-03-26 11:13:34,860 INFO save_to_file False
|
23 |
+
2023-03-26 11:13:34,861 INFO cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D
|
24 |
+
2023-03-26 11:13:34,862 INFO cfg.LOCAL_RANK: 0
|
25 |
+
2023-03-26 11:13:34,863 INFO cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub']
|
26 |
+
2023-03-26 11:13:34,864 INFO
|
27 |
+
cfg.DATA_CONFIG = edict()
|
28 |
+
2023-03-26 11:13:34,865 INFO cfg.DATA_CONFIG.DATASET: SunrgbdDataset
|
29 |
+
2023-03-26 11:13:34,866 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd
|
30 |
+
2023-03-26 11:13:34,866 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0
|
31 |
+
2023-03-26 11:13:34,868 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
|
32 |
+
2023-03-26 11:13:34,869 INFO
|
33 |
+
cfg.DATA_CONFIG.DATA_SPLIT = edict()
|
34 |
+
2023-03-26 11:13:34,869 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
|
35 |
+
2023-03-26 11:13:34,870 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
|
36 |
+
2023-03-26 11:13:34,870 INFO
|
37 |
+
cfg.DATA_CONFIG.REPEAT = edict()
|
38 |
+
2023-03-26 11:13:34,871 INFO cfg.DATA_CONFIG.REPEAT.train: 4
|
39 |
+
2023-03-26 11:13:34,872 INFO cfg.DATA_CONFIG.REPEAT.test: 1
|
40 |
+
2023-03-26 11:13:34,873 INFO
|
41 |
+
cfg.DATA_CONFIG.INFO_PATH = edict()
|
42 |
+
2023-03-26 11:13:34,874 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl']
|
43 |
+
2023-03-26 11:13:34,875 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl']
|
44 |
+
2023-03-26 11:13:34,876 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
|
45 |
+
2023-03-26 11:13:34,877 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
|
46 |
+
2023-03-26 11:13:34,877 INFO
|
47 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
|
48 |
+
2023-03-26 11:13:34,878 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
|
49 |
+
2023-03-26 11:13:34,879 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
|
50 |
+
2023-03-26 11:13:34,881 INFO
|
51 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
|
52 |
+
2023-03-26 11:13:34,882 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
|
53 |
+
2023-03-26 11:13:34,884 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}]
|
54 |
+
2023-03-26 11:13:34,884 INFO
|
55 |
+
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
|
56 |
+
2023-03-26 11:13:34,885 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
|
57 |
+
2023-03-26 11:13:34,886 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}]
|
58 |
+
2023-03-26 11:13:34,887 INFO
|
59 |
+
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
|
60 |
+
2023-03-26 11:13:34,888 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
|
61 |
+
2023-03-26 11:13:34,889 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
62 |
+
2023-03-26 11:13:34,890 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
|
63 |
+
2023-03-26 11:13:34,892 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}]
|
64 |
+
2023-03-26 11:13:34,893 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
|
65 |
+
2023-03-26 11:13:34,894 INFO cfg.VOXEL_SIZE: 0.02
|
66 |
+
2023-03-26 11:13:34,894 INFO cfg.N_CLASSES: 10
|
67 |
+
2023-03-26 11:13:34,894 INFO cfg.SEMANTIC_THR: 0.15
|
68 |
+
2023-03-26 11:13:34,895 INFO
|
69 |
+
cfg.MODEL = edict()
|
70 |
+
2023-03-26 11:13:34,896 INFO cfg.MODEL.NAME: CAGroup3D
|
71 |
+
2023-03-26 11:13:34,896 INFO cfg.MODEL.VOXEL_SIZE: 0.02
|
72 |
+
2023-03-26 11:13:34,897 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05
|
73 |
+
2023-03-26 11:13:34,898 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
|
74 |
+
2023-03-26 11:13:34,899 INFO cfg.MODEL.SEMANTIC_THR: 0.15
|
75 |
+
2023-03-26 11:13:34,899 INFO
|
76 |
+
cfg.MODEL.BACKBONE_3D = edict()
|
77 |
+
2023-03-26 11:13:34,900 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet
|
78 |
+
2023-03-26 11:13:34,900 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
|
79 |
+
2023-03-26 11:13:34,900 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
|
80 |
+
2023-03-26 11:13:34,901 INFO
|
81 |
+
cfg.MODEL.DENSE_HEAD = edict()
|
82 |
+
2023-03-26 11:13:34,902 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
|
83 |
+
2023-03-26 11:13:34,902 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
|
84 |
+
2023-03-26 11:13:34,902 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
|
85 |
+
2023-03-26 11:13:34,903 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
|
86 |
+
2023-03-26 11:13:34,903 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
|
87 |
+
2023-03-26 11:13:34,904 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 10
|
88 |
+
2023-03-26 11:13:34,904 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8
|
89 |
+
2023-03-26 11:13:34,905 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
|
90 |
+
2023-03-26 11:13:34,906 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: True
|
91 |
+
2023-03-26 11:13:34,907 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
|
92 |
+
2023-03-26 11:13:34,907 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
|
93 |
+
2023-03-26 11:13:34,908 INFO
|
94 |
+
cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
|
95 |
+
2023-03-26 11:13:34,909 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
|
96 |
+
2023-03-26 11:13:34,910 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
|
97 |
+
2023-03-26 11:13:34,910 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
|
98 |
+
2023-03-26 11:13:34,911 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
|
99 |
+
2023-03-26 11:13:34,911 INFO
|
100 |
+
cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
|
101 |
+
2023-03-26 11:13:34,912 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
|
102 |
+
2023-03-26 11:13:34,912 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
|
103 |
+
2023-03-26 11:13:34,913 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
|
104 |
+
2023-03-26 11:13:34,913 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2
|
105 |
+
2023-03-26 11:13:34,914 INFO
|
106 |
+
cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
|
107 |
+
2023-03-26 11:13:34,914 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
|
108 |
+
2023-03-26 11:13:34,915 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True
|
109 |
+
2023-03-26 11:13:34,916 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
|
110 |
+
2023-03-26 11:13:34,916 INFO
|
111 |
+
cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
|
112 |
+
2023-03-26 11:13:34,917 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
|
113 |
+
2023-03-26 11:13:34,917 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
|
114 |
+
2023-03-26 11:13:34,917 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
|
115 |
+
2023-03-26 11:13:34,918 INFO
|
116 |
+
cfg.MODEL.ROI_HEAD = edict()
|
117 |
+
2023-03-26 11:13:34,918 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
|
118 |
+
2023-03-26 11:13:34,919 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10
|
119 |
+
2023-03-26 11:13:34,919 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
|
120 |
+
2023-03-26 11:13:34,920 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
|
121 |
+
2023-03-26 11:13:34,921 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
|
122 |
+
2023-03-26 11:13:34,921 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2
|
123 |
+
2023-03-26 11:13:34,922 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
|
124 |
+
2023-03-26 11:13:34,923 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 7
|
125 |
+
2023-03-26 11:13:34,924 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True
|
126 |
+
2023-03-26 11:13:34,925 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
|
127 |
+
2023-03-26 11:13:34,926 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
|
128 |
+
2023-03-26 11:13:34,926 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
|
129 |
+
2023-03-26 11:13:34,926 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
|
130 |
+
2023-03-26 11:13:34,927 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
|
131 |
+
2023-03-26 11:13:34,927 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True
|
132 |
+
2023-03-26 11:13:34,928 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
|
133 |
+
2023-03-26 11:13:34,928 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
|
134 |
+
2023-03-26 11:13:34,928 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
|
135 |
+
2023-03-26 11:13:34,929 INFO
|
136 |
+
cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
|
137 |
+
2023-03-26 11:13:34,929 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
|
138 |
+
2023-03-26 11:13:34,930 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5
|
139 |
+
2023-03-26 11:13:34,930 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
|
140 |
+
2023-03-26 11:13:34,931 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
|
141 |
+
2023-03-26 11:13:34,932 INFO
|
142 |
+
cfg.MODEL.POST_PROCESSING = edict()
|
143 |
+
2023-03-26 11:13:34,933 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
|
144 |
+
2023-03-26 11:13:34,934 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
|
145 |
+
2023-03-26 11:13:34,934 INFO
|
146 |
+
cfg.OPTIMIZATION = edict()
|
147 |
+
2023-03-26 11:13:34,935 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
|
148 |
+
2023-03-26 11:13:34,935 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1
|
149 |
+
2023-03-26 11:13:34,936 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW
|
150 |
+
2023-03-26 11:13:34,936 INFO cfg.OPTIMIZATION.LR: 0.001
|
151 |
+
2023-03-26 11:13:34,937 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
|
152 |
+
2023-03-26 11:13:34,937 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11]
|
153 |
+
2023-03-26 11:13:34,938 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
|
154 |
+
2023-03-26 11:13:34,938 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
|
155 |
+
2023-03-26 11:13:34,939 INFO cfg.OPTIMIZATION.PCT_START: 0.4
|
156 |
+
2023-03-26 11:13:34,940 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
|
157 |
+
2023-03-26 11:13:34,941 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
|
158 |
+
2023-03-26 11:13:34,941 INFO cfg.OPTIMIZATION.LR_WARMUP: False
|
159 |
+
2023-03-26 11:13:34,942 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
|
160 |
+
2023-03-26 11:13:34,942 INFO cfg.TAG: CAGroup3D
|
161 |
+
2023-03-26 11:13:34,942 INFO cfg.EXP_GROUP_PATH: sunrgbd_models
|
162 |
+
2023-03-26 11:13:35,054 INFO Loading SUNRGBD dataset
|
163 |
+
2023-03-26 11:13:35,212 INFO Total samples for SUNRGBD dataset: 5285
|
164 |
+
2023-03-26 11:13:36,687 INFO DistributedDataParallel(
|
165 |
+
(module): CAGroup3D(
|
166 |
+
(vfe): None
|
167 |
+
(backbone_3d): BiResNet(
|
168 |
+
(conv1): Sequential(
|
169 |
+
(0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
170 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
171 |
+
(2): MinkowskiReLU()
|
172 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
173 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
174 |
+
(5): MinkowskiReLU()
|
175 |
+
)
|
176 |
+
(relu): MinkowskiReLU()
|
177 |
+
(layer1): Sequential(
|
178 |
+
(0): BasicBlock(
|
179 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
180 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
181 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
182 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
183 |
+
(relu): MinkowskiReLU()
|
184 |
+
(downsample): Sequential(
|
185 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
186 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
187 |
+
)
|
188 |
+
)
|
189 |
+
(1): BasicBlock(
|
190 |
+
(conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
191 |
+
(norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
192 |
+
(conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
193 |
+
(norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
194 |
+
(relu): MinkowskiReLU()
|
195 |
+
)
|
196 |
+
)
|
197 |
+
(layer2): Sequential(
|
198 |
+
(0): BasicBlock(
|
199 |
+
(conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
200 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
201 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
202 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
203 |
+
(relu): MinkowskiReLU()
|
204 |
+
(downsample): Sequential(
|
205 |
+
(0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
206 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
207 |
+
)
|
208 |
+
)
|
209 |
+
(1): BasicBlock(
|
210 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
211 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
212 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
213 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
214 |
+
(relu): MinkowskiReLU()
|
215 |
+
)
|
216 |
+
)
|
217 |
+
(layer3): Sequential(
|
218 |
+
(0): BasicBlock(
|
219 |
+
(conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
220 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
221 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
222 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
223 |
+
(relu): MinkowskiReLU()
|
224 |
+
(downsample): Sequential(
|
225 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
226 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
227 |
+
)
|
228 |
+
)
|
229 |
+
(1): BasicBlock(
|
230 |
+
(conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
231 |
+
(norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
232 |
+
(conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
233 |
+
(norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
234 |
+
(relu): MinkowskiReLU()
|
235 |
+
)
|
236 |
+
)
|
237 |
+
(layer4): Sequential(
|
238 |
+
(0): BasicBlock(
|
239 |
+
(conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
240 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
241 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
242 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
243 |
+
(relu): MinkowskiReLU()
|
244 |
+
(downsample): Sequential(
|
245 |
+
(0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
246 |
+
(1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
247 |
+
)
|
248 |
+
)
|
249 |
+
(1): BasicBlock(
|
250 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
251 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
252 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
253 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
254 |
+
(relu): MinkowskiReLU()
|
255 |
+
)
|
256 |
+
)
|
257 |
+
(compression3): Sequential(
|
258 |
+
(0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
259 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
260 |
+
)
|
261 |
+
(compression4): Sequential(
|
262 |
+
(0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
263 |
+
(1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
264 |
+
)
|
265 |
+
(down3): Sequential(
|
266 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
267 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
268 |
+
)
|
269 |
+
(down4): Sequential(
|
270 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
271 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
272 |
+
(2): MinkowskiReLU()
|
273 |
+
(3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
274 |
+
(4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
275 |
+
)
|
276 |
+
(layer3_): Sequential(
|
277 |
+
(0): BasicBlock(
|
278 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
279 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
280 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
281 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
282 |
+
(relu): MinkowskiReLU()
|
283 |
+
)
|
284 |
+
(1): BasicBlock(
|
285 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
286 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
287 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
288 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
289 |
+
(relu): MinkowskiReLU()
|
290 |
+
)
|
291 |
+
)
|
292 |
+
(layer4_): Sequential(
|
293 |
+
(0): BasicBlock(
|
294 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
295 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
296 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
297 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
298 |
+
(relu): MinkowskiReLU()
|
299 |
+
)
|
300 |
+
(1): BasicBlock(
|
301 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
302 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
303 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
304 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
305 |
+
(relu): MinkowskiReLU()
|
306 |
+
)
|
307 |
+
)
|
308 |
+
(layer5_): Sequential(
|
309 |
+
(0): Bottleneck(
|
310 |
+
(conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
311 |
+
(norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
312 |
+
(conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
313 |
+
(norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
314 |
+
(conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
315 |
+
(norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
316 |
+
(relu): MinkowskiReLU()
|
317 |
+
(downsample): Sequential(
|
318 |
+
(0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
319 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
320 |
+
)
|
321 |
+
)
|
322 |
+
)
|
323 |
+
(layer5): Sequential(
|
324 |
+
(0): Bottleneck(
|
325 |
+
(conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
326 |
+
(norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
327 |
+
(conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1])
|
328 |
+
(norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
329 |
+
(conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
330 |
+
(norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
331 |
+
(relu): MinkowskiReLU()
|
332 |
+
(downsample): Sequential(
|
333 |
+
(0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1])
|
334 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
335 |
+
)
|
336 |
+
)
|
337 |
+
)
|
338 |
+
(spp): DAPPM(
|
339 |
+
(scale1): Sequential(
|
340 |
+
(0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1])
|
341 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
342 |
+
(2): MinkowskiReLU()
|
343 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
344 |
+
)
|
345 |
+
(scale2): Sequential(
|
346 |
+
(0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1])
|
347 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
348 |
+
(2): MinkowskiReLU()
|
349 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
350 |
+
)
|
351 |
+
(scale3): Sequential(
|
352 |
+
(0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1])
|
353 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
354 |
+
(2): MinkowskiReLU()
|
355 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
356 |
+
)
|
357 |
+
(scale4): Sequential(
|
358 |
+
(0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1])
|
359 |
+
(1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
360 |
+
(2): MinkowskiReLU()
|
361 |
+
(3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
362 |
+
)
|
363 |
+
(scale0): Sequential(
|
364 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
365 |
+
(1): MinkowskiReLU()
|
366 |
+
(2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
367 |
+
)
|
368 |
+
(process1): Sequential(
|
369 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
370 |
+
(1): MinkowskiReLU()
|
371 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
372 |
+
)
|
373 |
+
(process2): Sequential(
|
374 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
375 |
+
(1): MinkowskiReLU()
|
376 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
377 |
+
)
|
378 |
+
(process3): Sequential(
|
379 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
380 |
+
(1): MinkowskiReLU()
|
381 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
382 |
+
)
|
383 |
+
(process4): Sequential(
|
384 |
+
(0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
385 |
+
(1): MinkowskiReLU()
|
386 |
+
(2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
387 |
+
)
|
388 |
+
(compression): Sequential(
|
389 |
+
(0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
390 |
+
(1): MinkowskiReLU()
|
391 |
+
(2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
392 |
+
)
|
393 |
+
(shortcut): Sequential(
|
394 |
+
(0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
395 |
+
(1): MinkowskiReLU()
|
396 |
+
(2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
397 |
+
)
|
398 |
+
)
|
399 |
+
(out): Sequential(
|
400 |
+
(0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1])
|
401 |
+
(1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
402 |
+
(2): MinkowskiReLU()
|
403 |
+
(3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
404 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
405 |
+
(5): MinkowskiReLU()
|
406 |
+
)
|
407 |
+
)
|
408 |
+
(map_to_bev_module): None
|
409 |
+
(pfe): None
|
410 |
+
(backbone_2d): None
|
411 |
+
(dense_head): CAGroup3DHead(
|
412 |
+
(loss_centerness): CrossEntropy()
|
413 |
+
(loss_bbox): IoU3DLoss()
|
414 |
+
(loss_cls): FocalLoss()
|
415 |
+
(loss_sem): FocalLoss()
|
416 |
+
(loss_offset): SmoothL1Loss()
|
417 |
+
(offset_block): Sequential(
|
418 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
419 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
420 |
+
(2): MinkowskiELU()
|
421 |
+
(3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
422 |
+
(4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
423 |
+
(5): MinkowskiELU()
|
424 |
+
(6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
425 |
+
)
|
426 |
+
(feature_offset): Sequential(
|
427 |
+
(0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1])
|
428 |
+
(1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
429 |
+
(2): MinkowskiELU()
|
430 |
+
)
|
431 |
+
(semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
432 |
+
(centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
433 |
+
(reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
434 |
+
(cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
435 |
+
(scales): ModuleList(
|
436 |
+
(0): Scale()
|
437 |
+
(1): Scale()
|
438 |
+
(2): Scale()
|
439 |
+
(3): Scale()
|
440 |
+
(4): Scale()
|
441 |
+
(5): Scale()
|
442 |
+
(6): Scale()
|
443 |
+
(7): Scale()
|
444 |
+
(8): Scale()
|
445 |
+
(9): Scale()
|
446 |
+
)
|
447 |
+
(cls_individual_out): ModuleList(
|
448 |
+
(0): Sequential(
|
449 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
450 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
451 |
+
(2): MinkowskiELU()
|
452 |
+
)
|
453 |
+
(1): Sequential(
|
454 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
455 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
456 |
+
(2): MinkowskiELU()
|
457 |
+
)
|
458 |
+
(2): Sequential(
|
459 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
460 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
461 |
+
(2): MinkowskiELU()
|
462 |
+
)
|
463 |
+
(3): Sequential(
|
464 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
465 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
466 |
+
(2): MinkowskiELU()
|
467 |
+
)
|
468 |
+
(4): Sequential(
|
469 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
470 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
471 |
+
(2): MinkowskiELU()
|
472 |
+
)
|
473 |
+
(5): Sequential(
|
474 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
475 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
476 |
+
(2): MinkowskiELU()
|
477 |
+
)
|
478 |
+
(6): Sequential(
|
479 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
480 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
481 |
+
(2): MinkowskiELU()
|
482 |
+
)
|
483 |
+
(7): Sequential(
|
484 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
485 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
486 |
+
(2): MinkowskiELU()
|
487 |
+
)
|
488 |
+
(8): Sequential(
|
489 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
490 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
491 |
+
(2): MinkowskiELU()
|
492 |
+
)
|
493 |
+
(9): Sequential(
|
494 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1])
|
495 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
496 |
+
(2): MinkowskiELU()
|
497 |
+
)
|
498 |
+
)
|
499 |
+
(cls_individual_up): ModuleList(
|
500 |
+
(0): ModuleList(
|
501 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
502 |
+
(1): Sequential(
|
503 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
504 |
+
(1): MinkowskiELU()
|
505 |
+
)
|
506 |
+
)
|
507 |
+
(1): ModuleList(
|
508 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
509 |
+
(1): Sequential(
|
510 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
511 |
+
(1): MinkowskiELU()
|
512 |
+
)
|
513 |
+
)
|
514 |
+
(2): ModuleList(
|
515 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
516 |
+
(1): Sequential(
|
517 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
518 |
+
(1): MinkowskiELU()
|
519 |
+
)
|
520 |
+
)
|
521 |
+
(3): ModuleList(
|
522 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
523 |
+
(1): Sequential(
|
524 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
525 |
+
(1): MinkowskiELU()
|
526 |
+
)
|
527 |
+
)
|
528 |
+
(4): ModuleList(
|
529 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
530 |
+
(1): Sequential(
|
531 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
532 |
+
(1): MinkowskiELU()
|
533 |
+
)
|
534 |
+
)
|
535 |
+
(5): ModuleList(
|
536 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
537 |
+
(1): Sequential(
|
538 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
539 |
+
(1): MinkowskiELU()
|
540 |
+
)
|
541 |
+
)
|
542 |
+
(6): ModuleList(
|
543 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
544 |
+
(1): Sequential(
|
545 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
546 |
+
(1): MinkowskiELU()
|
547 |
+
)
|
548 |
+
)
|
549 |
+
(7): ModuleList(
|
550 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
551 |
+
(1): Sequential(
|
552 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
553 |
+
(1): MinkowskiELU()
|
554 |
+
)
|
555 |
+
)
|
556 |
+
(8): ModuleList(
|
557 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
558 |
+
(1): Sequential(
|
559 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
560 |
+
(1): MinkowskiELU()
|
561 |
+
)
|
562 |
+
)
|
563 |
+
(9): ModuleList(
|
564 |
+
(0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1])
|
565 |
+
(1): Sequential(
|
566 |
+
(0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
567 |
+
(1): MinkowskiELU()
|
568 |
+
)
|
569 |
+
)
|
570 |
+
)
|
571 |
+
(cls_individual_fuse): ModuleList(
|
572 |
+
(0): Sequential(
|
573 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
574 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
575 |
+
(2): MinkowskiELU()
|
576 |
+
)
|
577 |
+
(1): Sequential(
|
578 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
579 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
580 |
+
(2): MinkowskiELU()
|
581 |
+
)
|
582 |
+
(2): Sequential(
|
583 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
584 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
585 |
+
(2): MinkowskiELU()
|
586 |
+
)
|
587 |
+
(3): Sequential(
|
588 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
589 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
590 |
+
(2): MinkowskiELU()
|
591 |
+
)
|
592 |
+
(4): Sequential(
|
593 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
594 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
595 |
+
(2): MinkowskiELU()
|
596 |
+
)
|
597 |
+
(5): Sequential(
|
598 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
599 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
600 |
+
(2): MinkowskiELU()
|
601 |
+
)
|
602 |
+
(6): Sequential(
|
603 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
604 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
605 |
+
(2): MinkowskiELU()
|
606 |
+
)
|
607 |
+
(7): Sequential(
|
608 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
609 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
610 |
+
(2): MinkowskiELU()
|
611 |
+
)
|
612 |
+
(8): Sequential(
|
613 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
614 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
615 |
+
(2): MinkowskiELU()
|
616 |
+
)
|
617 |
+
(9): Sequential(
|
618 |
+
(0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1])
|
619 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
620 |
+
(2): MinkowskiELU()
|
621 |
+
)
|
622 |
+
)
|
623 |
+
(cls_individual_expand_out): ModuleList(
|
624 |
+
(0): Sequential(
|
625 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
626 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
627 |
+
(2): MinkowskiELU()
|
628 |
+
)
|
629 |
+
(1): Sequential(
|
630 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
631 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
632 |
+
(2): MinkowskiELU()
|
633 |
+
)
|
634 |
+
(2): Sequential(
|
635 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
636 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
637 |
+
(2): MinkowskiELU()
|
638 |
+
)
|
639 |
+
(3): Sequential(
|
640 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
641 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
642 |
+
(2): MinkowskiELU()
|
643 |
+
)
|
644 |
+
(4): Sequential(
|
645 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
646 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
647 |
+
(2): MinkowskiELU()
|
648 |
+
)
|
649 |
+
(5): Sequential(
|
650 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
651 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
652 |
+
(2): MinkowskiELU()
|
653 |
+
)
|
654 |
+
(6): Sequential(
|
655 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
656 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
657 |
+
(2): MinkowskiELU()
|
658 |
+
)
|
659 |
+
(7): Sequential(
|
660 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
661 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
662 |
+
(2): MinkowskiELU()
|
663 |
+
)
|
664 |
+
(8): Sequential(
|
665 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
666 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
667 |
+
(2): MinkowskiELU()
|
668 |
+
)
|
669 |
+
(9): Sequential(
|
670 |
+
(0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
671 |
+
(1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
672 |
+
(2): MinkowskiELU()
|
673 |
+
)
|
674 |
+
)
|
675 |
+
)
|
676 |
+
(point_head): None
|
677 |
+
(roi_head): CAGroup3DRoIHead(
|
678 |
+
(iou_loss_computer): IoU3DLoss()
|
679 |
+
(proposal_target_layer): ProposalTargetLayer()
|
680 |
+
(reg_loss_func): WeightedSmoothL1Loss()
|
681 |
+
(roi_grid_pool_layers): ModuleList(
|
682 |
+
(0): SimplePoolingLayer(
|
683 |
+
(grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1])
|
684 |
+
(grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
685 |
+
(grid_relu): MinkowskiELU()
|
686 |
+
(pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1])
|
687 |
+
(pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
688 |
+
)
|
689 |
+
)
|
690 |
+
(reg_fc_layers): Sequential(
|
691 |
+
(0): Linear(in_features=128, out_features=256, bias=False)
|
692 |
+
(1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
693 |
+
(2): ReLU()
|
694 |
+
(3): Dropout(p=0.3, inplace=False)
|
695 |
+
(4): Linear(in_features=256, out_features=256, bias=False)
|
696 |
+
(5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
|
697 |
+
(6): ReLU()
|
698 |
+
)
|
699 |
+
(reg_pred_layer): Linear(in_features=256, out_features=8, bias=True)
|
700 |
+
)
|
701 |
+
)
|
702 |
+
)
|
703 |
+
2023-03-26 11:13:36,794 INFO **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************
|
704 |
+
2023-03-26 12:29:52,942 INFO Epoch [ 1][ 50]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.20667796790599824, loss_bbox: 0.2990968986600637, loss_cls: 0.3071140018105507, loss_sem: 1.0371560204029082, loss_vote: 0.4092518210411072, one_stage_loss: 2.259296736717224, rcnn_loss_reg: 0.06894166469573974, rcnn_loss_iou: 0.03426224589347839, loss_two_stage: 0.10320390939712525,
|
705 |
+
2023-03-26 13:52:01,310 INFO Epoch [ 1][ 100]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5310189422965049, loss_bbox: 0.7474155166745186, loss_cls: 0.6665185099840164, loss_sem: 0.6469615936279297, loss_vote: 0.3759205311536789, one_stage_loss: 2.967835102081299, rcnn_loss_reg: 0.4916525638103485, rcnn_loss_iou: 0.31042004823684693, loss_two_stage: 0.8020726108551025,
|
706 |
+
2023-03-26 15:16:34,527 INFO Epoch [ 1][ 150]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.47814485549926755, loss_bbox: 0.6697727379202842, loss_cls: 0.5062539026141166, loss_sem: 0.5720264983177185, loss_vote: 0.3539592534303665, one_stage_loss: 2.580157253742218, rcnn_loss_reg: 0.4772424042224884, rcnn_loss_iou: 0.2981147265434265, loss_two_stage: 0.7753571343421936,
|
707 |
+
2023-03-26 16:42:56,533 INFO Epoch [ 1][ 200]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5514369648694992, loss_bbox: 0.7656048792600632, loss_cls: 0.5199696916341782, loss_sem: 0.5628203338384629, loss_vote: 0.3609760856628418, one_stage_loss: 2.7608079433441164, rcnn_loss_reg: 0.5857562351226807, rcnn_loss_iou: 0.35664750695228575, loss_two_stage: 0.9424037384986877,
|
708 |
+
2023-03-26 18:04:56,578 INFO Epoch [ 1][ 250]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.47652084708213804, loss_bbox: 0.6971965312957764, loss_cls: 0.4520271807909012, loss_sem: 0.6041016298532486, loss_vote: 0.35814492881298066, one_stage_loss: 2.587991120815277, rcnn_loss_reg: 0.29248207330703735, rcnn_loss_iou: 0.1785850465297699, loss_two_stage: 0.47106712102890014,
|
709 |
+
2023-03-26 19:28:39,683 INFO Epoch [ 1][ 300]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5167306911945343, loss_bbox: 0.7328562247753143, loss_cls: 0.45524279356002806, loss_sem: 0.515706689953804, loss_vote: 0.32769578754901885, one_stage_loss: 2.5482321834564208, rcnn_loss_reg: 0.35428098678588865, rcnn_loss_iou: 0.21939268827438355, loss_two_stage: 0.5736736750602722,
|
710 |
+
2023-03-26 20:53:09,330 INFO Epoch [ 1][ 350]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.604567551612854, loss_bbox: 0.8178253293037414, loss_cls: 0.5145705115795135, loss_sem: 0.4814878588914871, loss_vote: 0.30948863834142687, one_stage_loss: 2.727939887046814, rcnn_loss_reg: 0.8254446721076966, rcnn_loss_iou: 0.5003487575054169, loss_two_stage: 1.3257934308052064,
|
711 |
+
2023-03-26 22:14:45,021 INFO Epoch [ 1][ 400]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5232829931378364, loss_bbox: 0.729054206609726, loss_cls: 0.4304437929391861, loss_sem: 0.6052549344301223, loss_vote: 0.32101795822381973, one_stage_loss: 2.609053874015808, rcnn_loss_reg: 0.47852428913116457, rcnn_loss_iou: 0.29645866751670835, loss_two_stage: 0.7749829506874084,
|
712 |
+
2023-03-26 23:39:29,069 INFO Epoch [ 1][ 450]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.4240903949737549, loss_bbox: 0.6023871430754661, loss_cls: 0.43437127619981764, loss_sem: 0.58591732442379, loss_vote: 0.31612290561199186, one_stage_loss: 2.362889051437378, rcnn_loss_reg: 0.3720583057403564, rcnn_loss_iou: 0.2311265003681183, loss_two_stage: 0.6031848061084747,
|
713 |
+
2023-03-27 01:03:24,345 INFO Epoch [ 1][ 500]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.3820648092031479, loss_bbox: 0.5443513408303261, loss_cls: 0.36938557237386704, loss_sem: 0.6360691225528717, loss_vote: 0.31682781159877776, one_stage_loss: 2.2486986470222474, rcnn_loss_reg: 0.36717917561531066, rcnn_loss_iou: 0.23230359673500062, loss_two_stage: 0.5994827747344971,
|
714 |
+
2023-03-27 02:25:21,026 INFO Epoch [ 1][ 550]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5708097213506699, loss_bbox: 0.7884046626091004, loss_cls: 0.5089094871282578, loss_sem: 0.5691659837961197, loss_vote: 0.3056716549396515, one_stage_loss: 2.742961506843567, rcnn_loss_reg: 0.6101349353790283, rcnn_loss_iou: 0.3731300795078278, loss_two_stage: 0.9832650113105774,
|
715 |
+
2023-03-27 03:44:41,116 INFO Epoch [ 1][ 600]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5802704590559006, loss_bbox: 0.7960068082809448, loss_cls: 0.459269055724144, loss_sem: 0.5500217407941819, loss_vote: 0.29440259009599684, one_stage_loss: 2.6799706506729124, rcnn_loss_reg: 0.6698205232620239, rcnn_loss_iou: 0.40001817524433136, loss_two_stage: 1.069838695526123,
|
716 |
+
2023-03-27 05:05:05,293 INFO Epoch [ 1][ 650]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5250428706407547, loss_bbox: 0.7363606292009354, loss_cls: 0.4330296140909195, loss_sem: 0.6324895197153091, loss_vote: 0.3019771608710289, one_stage_loss: 2.6288998174667357, rcnn_loss_reg: 0.4743223488330841, rcnn_loss_iou: 0.290767160654068, loss_two_stage: 0.7650895142555236,
|
717 |
+
2023-03-27 06:23:27,892 INFO Epoch [ 1][ 700]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5444362837076188, loss_bbox: 0.7522995507717133, loss_cls: 0.4244315469264984, loss_sem: 0.45511561155319213, loss_vote: 0.3005108740925789, one_stage_loss: 2.476793870925903, rcnn_loss_reg: 0.5306920790672303, rcnn_loss_iou: 0.31801644802093504, loss_two_stage: 0.8487085247039795,
|
718 |
+
2023-03-27 07:47:41,250 INFO Epoch [ 1][ 750]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6098733115196228, loss_bbox: 0.8267546522617341, loss_cls: 0.45813657343387604, loss_sem: 0.47525602877140044, loss_vote: 0.2934702724218369, one_stage_loss: 2.6634908294677735, rcnn_loss_reg: 0.7940043830871581, rcnn_loss_iou: 0.4807016372680664, loss_two_stage: 1.2747060203552245,
|
719 |
+
2023-03-27 09:12:50,838 INFO Epoch [ 1][ 800]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5564212232828141, loss_bbox: 0.7674001061916351, loss_cls: 0.4770412653684616, loss_sem: 0.5462373447418213, loss_vote: 0.28620937079191205, one_stage_loss: 2.6333092975616457, rcnn_loss_reg: 0.633576123714447, rcnn_loss_iou: 0.390158035159111, loss_two_stage: 1.0237341594696046,
|
720 |
+
2023-03-27 10:33:02,697 INFO Epoch [ 1][ 850]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6046576589345932, loss_bbox: 0.8187049305438996, loss_cls: 0.44491772472858426, loss_sem: 0.5175370579957962, loss_vote: 0.2872957721352577, one_stage_loss: 2.6731131219863893, rcnn_loss_reg: 0.7730563342571258, rcnn_loss_iou: 0.4753589242696762, loss_two_stage: 1.2484152507781983,
|
721 |
+
2023-03-27 11:57:22,870 INFO Epoch [ 1][ 900]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6090051412582398, loss_bbox: 0.8095787620544433, loss_cls: 0.4284948009252548, loss_sem: 0.544955484867096, loss_vote: 0.289944207072258, one_stage_loss: 2.6819783878326415, rcnn_loss_reg: 0.8724133563041687, rcnn_loss_iou: 0.5291033411026, loss_two_stage: 1.4015166926383973,
|
722 |
+
2023-03-27 13:17:06,861 INFO Epoch [ 1][ 950]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5685943412780762, loss_bbox: 0.789885265827179, loss_cls: 0.4120765841007233, loss_sem: 0.44937529861927034, loss_vote: 0.2983333826065063, one_stage_loss: 2.5182648515701294, rcnn_loss_reg: 0.532546899318695, rcnn_loss_iou: 0.33089754700660706, loss_two_stage: 0.863444447517395,
|
723 |
+
2023-03-27 14:41:55,361 INFO Epoch [ 1][1000]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6334057796001434, loss_bbox: 0.8424523377418518, loss_cls: 0.4098082458972931, loss_sem: 0.40657821238040925, loss_vote: 0.2823134985566139, one_stage_loss: 2.5745581150054933, rcnn_loss_reg: 0.8423162472248077, rcnn_loss_iou: 0.514250785112381, loss_two_stage: 1.3565670371055603,
|
724 |
+
2023-03-27 16:00:37,355 INFO Epoch [ 1][1050]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5406019860506057, loss_bbox: 0.7440398615598679, loss_cls: 0.39454961895942686, loss_sem: 0.5495830583572388, loss_vote: 0.2843384724855423, one_stage_loss: 2.5131130170822145, rcnn_loss_reg: 0.6645504760742188, rcnn_loss_iou: 0.4026562488079071, loss_two_stage: 1.0672067260742188,
|
725 |
+
2023-03-27 17:20:17,667 INFO Epoch [ 1][1100]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5215873223543167, loss_bbox: 0.7336350619792938, loss_cls: 0.41735528588294984, loss_sem: 0.4811014491319656, loss_vote: 0.29286098569631575, one_stage_loss: 2.4465401220321654, rcnn_loss_reg: 0.40519655585289, rcnn_loss_iou: 0.2512069880962372, loss_two_stage: 0.656403546333313,
|
726 |
+
2023-03-27 18:39:11,247 INFO Epoch [ 1][1150]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.5330367308855056, loss_bbox: 0.7439761543273926, loss_cls: 0.40116438329219817, loss_sem: 0.5646754199266434, loss_vote: 0.29715222597122193, one_stage_loss: 2.5400049018859865, rcnn_loss_reg: 0.6408816885948181, rcnn_loss_iou: 0.39092864990234377, loss_two_stage: 1.031810338497162,
|
727 |
+
2023-03-27 20:02:50,511 INFO Epoch [ 1][1200]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6315625596046448, loss_bbox: 0.8405828297138214, loss_cls: 0.4183447903394699, loss_sem: 0.3946588611602783, loss_vote: 0.28028561860322954, one_stage_loss: 2.565434675216675, rcnn_loss_reg: 0.8700305473804474, rcnn_loss_iou: 0.5194281542301178, loss_two_stage: 1.3894586968421936,
|
728 |
+
2023-03-27 21:25:10,486 INFO Epoch [ 1][1250]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6114491987228393, loss_bbox: 0.8168105685710907, loss_cls: 0.4101775807142258, loss_sem: 0.4728459024429321, loss_vote: 0.27880846709012985, one_stage_loss: 2.590091710090637, rcnn_loss_reg: 0.8118275630474091, rcnn_loss_iou: 0.4983943772315979, loss_two_stage: 1.3102219486236573,
|
729 |
+
2023-03-27 22:47:39,311 INFO Epoch [ 1][1300]/[1322] : lr: 1.000e-03, sem_thr: 0.15, loss_centerness: 0.6145700442790986, loss_bbox: 0.81527019739151, loss_cls: 0.3963031381368637, loss_sem: 0.4105939191579819, loss_vote: 0.27149350941181183, one_stage_loss: 2.5082308149337766, rcnn_loss_reg: 0.8241646671295166, rcnn_loss_iou: 0.4978309834003449, loss_two_stage: 1.3219956469535827,
|
730 |
+
2023-03-27 23:26:17,307 INFO **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************
|
731 |
+
|
732 |
+
|
733 |
+
|
734 |
+
2023-03-27 23:26:17,309 INFO **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd)**********************
|
735 |
+
2023-03-27 23:26:17,310 INFO Loading SUNRGBD dataset
|
736 |
+
2023-03-27 23:26:17,476 INFO Total samples for SUNRGBD dataset: 5050
|
737 |
+
2023-03-27 23:26:17,484 INFO ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd\ckpt\checkpoint_epoch_1.pth to CPU
|
738 |
+
2023-03-27 23:26:18,098 INFO ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py60edc0c
|
739 |
+
2023-03-27 23:26:18,162 INFO ==> Done (loaded 638/638)
|
740 |
+
2023-03-27 23:26:19,088 INFO *************** EPOCH 1 EVALUATION *****************
|
tensorboard/events.out.tfevents.1679800415.DESKTOP-OROUQQR
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7ebf164f0e308ab477ddc5e45d87a020dbe3fdf9c527a24e4250aa67d2665a8
|
3 |
+
size 968734
|