6DammK9 commited on
Commit
9cd94e7
·
1 Parent(s): 7a25adb

Upload 2 files

Browse files
eval/epoch_1/val/default/log_eval_20230331-075525.txt ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2023-03-31 07:55:25,762 INFO **********************Start logging**********************
2
+ 2023-03-31 07:55:25,763 INFO CUDA_VISIBLE_DEVICES=ALL
3
+ 2023-03-31 07:55:25,764 INFO total_batch_size: 16
4
+ 2023-03-31 07:55:25,765 INFO cfg_file cfgs/sunrgbd_models/CAGroup3D.yaml
5
+ 2023-03-31 07:55:25,765 INFO batch_size 16
6
+ 2023-03-31 07:55:25,766 INFO workers 4
7
+ 2023-03-31 07:55:25,766 INFO extra_tag cagroup3d-win10-sunrgbd-eval
8
+ 2023-03-31 07:55:25,767 INFO ckpt ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train/ckpt/checkpoint_epoch_1.pth
9
+ 2023-03-31 07:55:25,768 INFO launcher pytorch
10
+ 2023-03-31 07:55:25,768 INFO tcp_port 18888
11
+ 2023-03-31 07:55:25,768 INFO set_cfgs None
12
+ 2023-03-31 07:55:25,770 INFO max_waiting_mins 30
13
+ 2023-03-31 07:55:25,770 INFO start_epoch 0
14
+ 2023-03-31 07:55:25,771 INFO eval_tag default
15
+ 2023-03-31 07:55:25,772 INFO eval_all False
16
+ 2023-03-31 07:55:25,772 INFO ckpt_dir None
17
+ 2023-03-31 07:55:25,772 INFO save_to_file False
18
+ 2023-03-31 07:55:25,773 INFO cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D
19
+ 2023-03-31 07:55:25,774 INFO cfg.LOCAL_RANK: 0
20
+ 2023-03-31 07:55:25,774 INFO cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub']
21
+ 2023-03-31 07:55:25,775 INFO
22
+ cfg.DATA_CONFIG = edict()
23
+ 2023-03-31 07:55:25,776 INFO cfg.DATA_CONFIG.DATASET: SunrgbdDataset
24
+ 2023-03-31 07:55:25,776 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd
25
+ 2023-03-31 07:55:25,777 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0
26
+ 2023-03-31 07:55:25,778 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10]
27
+ 2023-03-31 07:55:25,779 INFO
28
+ cfg.DATA_CONFIG.DATA_SPLIT = edict()
29
+ 2023-03-31 07:55:25,781 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
30
+ 2023-03-31 07:55:25,781 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
31
+ 2023-03-31 07:55:25,783 INFO
32
+ cfg.DATA_CONFIG.REPEAT = edict()
33
+ 2023-03-31 07:55:25,784 INFO cfg.DATA_CONFIG.REPEAT.train: 4
34
+ 2023-03-31 07:55:25,784 INFO cfg.DATA_CONFIG.REPEAT.test: 1
35
+ 2023-03-31 07:55:25,785 INFO
36
+ cfg.DATA_CONFIG.INFO_PATH = edict()
37
+ 2023-03-31 07:55:25,786 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl']
38
+ 2023-03-31 07:55:25,787 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl']
39
+ 2023-03-31 07:55:25,789 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
40
+ 2023-03-31 07:55:25,789 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True
41
+ 2023-03-31 07:55:25,790 INFO
42
+ cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict()
43
+ 2023-03-31 07:55:25,791 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder']
44
+ 2023-03-31 07:55:25,792 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}]
45
+ 2023-03-31 07:55:25,793 INFO
46
+ cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict()
47
+ 2023-03-31 07:55:25,796 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder']
48
+ 2023-03-31 07:55:25,797 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}]
49
+ 2023-03-31 07:55:25,798 INFO
50
+ cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
51
+ 2023-03-31 07:55:25,799 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
52
+ 2023-03-31 07:55:25,800 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}]
53
+ 2023-03-31 07:55:25,801 INFO
54
+ cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
55
+ 2023-03-31 07:55:25,801 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
56
+ 2023-03-31 07:55:25,804 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
57
+ 2023-03-31 07:55:25,804 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b']
58
+ 2023-03-31 07:55:25,805 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}]
59
+ 2023-03-31 07:55:25,806 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml
60
+ 2023-03-31 07:55:25,807 INFO cfg.VOXEL_SIZE: 0.02
61
+ 2023-03-31 07:55:25,808 INFO cfg.N_CLASSES: 10
62
+ 2023-03-31 07:55:25,810 INFO cfg.SEMANTIC_THR: 0.15
63
+ 2023-03-31 07:55:25,810 INFO
64
+ cfg.MODEL = edict()
65
+ 2023-03-31 07:55:25,811 INFO cfg.MODEL.NAME: CAGroup3D
66
+ 2023-03-31 07:55:25,811 INFO cfg.MODEL.VOXEL_SIZE: 0.02
67
+ 2023-03-31 07:55:25,812 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05
68
+ 2023-03-31 07:55:25,813 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02
69
+ 2023-03-31 07:55:25,814 INFO cfg.MODEL.SEMANTIC_THR: 0.15
70
+ 2023-03-31 07:55:25,815 INFO
71
+ cfg.MODEL.BACKBONE_3D = edict()
72
+ 2023-03-31 07:55:25,816 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet
73
+ 2023-03-31 07:55:25,816 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3
74
+ 2023-03-31 07:55:25,817 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64
75
+ 2023-03-31 07:55:25,819 INFO
76
+ cfg.MODEL.DENSE_HEAD = edict()
77
+ 2023-03-31 07:55:25,820 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead
78
+ 2023-03-31 07:55:25,821 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512]
79
+ 2023-03-31 07:55:25,821 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64
80
+ 2023-03-31 07:55:25,822 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15
81
+ 2023-03-31 07:55:25,823 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02
82
+ 2023-03-31 07:55:25,824 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 10
83
+ 2023-03-31 07:55:25,824 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8
84
+ 2023-03-31 07:55:25,825 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9
85
+ 2023-03-31 07:55:25,825 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: True
86
+ 2023-03-31 07:55:25,826 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False
87
+ 2023-03-31 07:55:25,827 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3
88
+ 2023-03-31 07:55:25,828 INFO
89
+ cfg.MODEL.DENSE_HEAD.ASSIGNER = edict()
90
+ 2023-03-31 07:55:25,828 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner
91
+ 2023-03-31 07:55:25,830 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27
92
+ 2023-03-31 07:55:25,831 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18
93
+ 2023-03-31 07:55:25,831 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4
94
+ 2023-03-31 07:55:25,833 INFO
95
+ cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict()
96
+ 2023-03-31 07:55:25,833 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss
97
+ 2023-03-31 07:55:25,834 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04
98
+ 2023-03-31 07:55:25,835 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum
99
+ 2023-03-31 07:55:25,836 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2
100
+ 2023-03-31 07:55:25,837 INFO
101
+ cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict()
102
+ 2023-03-31 07:55:25,838 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss
103
+ 2023-03-31 07:55:25,839 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True
104
+ 2023-03-31 07:55:25,840 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0
105
+ 2023-03-31 07:55:25,841 INFO
106
+ cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict()
107
+ 2023-03-31 07:55:25,842 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01
108
+ 2023-03-31 07:55:25,842 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000
109
+ 2023-03-31 07:55:25,843 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5
110
+ 2023-03-31 07:55:25,843 INFO
111
+ cfg.MODEL.ROI_HEAD = edict()
112
+ 2023-03-31 07:55:25,845 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead
113
+ 2023-03-31 07:55:25,847 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10
114
+ 2023-03-31 07:55:25,848 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3]
115
+ 2023-03-31 07:55:25,849 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7
116
+ 2023-03-31 07:55:25,849 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02
117
+ 2023-03-31 07:55:25,850 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2
118
+ 2023-03-31 07:55:25,851 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]]
119
+ 2023-03-31 07:55:25,852 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 7
120
+ 2023-03-31 07:55:25,853 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True
121
+ 2023-03-31 07:55:25,853 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128
122
+ 2023-03-31 07:55:25,855 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9
123
+ 2023-03-31 07:55:25,857 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3
124
+ 2023-03-31 07:55:25,858 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5
125
+ 2023-03-31 07:55:25,858 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False
126
+ 2023-03-31 07:55:25,860 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True
127
+ 2023-03-31 07:55:25,862 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False
128
+ 2023-03-31 07:55:25,862 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True
129
+ 2023-03-31 07:55:25,863 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True
130
+ 2023-03-31 07:55:25,864 INFO
131
+ cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict()
132
+ 2023-03-31 07:55:25,865 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0
133
+ 2023-03-31 07:55:25,865 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5
134
+ 2023-03-31 07:55:25,865 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0
135
+ 2023-03-31 07:55:25,866 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
136
+ 2023-03-31 07:55:25,867 INFO
137
+ cfg.MODEL.POST_PROCESSING = edict()
138
+ 2023-03-31 07:55:25,868 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5]
139
+ 2023-03-31 07:55:25,870 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet
140
+ 2023-03-31 07:55:25,871 INFO
141
+ cfg.OPTIMIZATION = edict()
142
+ 2023-03-31 07:55:25,872 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16
143
+ 2023-03-31 07:55:25,873 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1
144
+ 2023-03-31 07:55:25,873 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW
145
+ 2023-03-31 07:55:25,875 INFO cfg.OPTIMIZATION.LR: 0.001
146
+ 2023-03-31 07:55:25,876 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
147
+ 2023-03-31 07:55:25,877 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11]
148
+ 2023-03-31 07:55:25,878 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
149
+ 2023-03-31 07:55:25,878 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
150
+ 2023-03-31 07:55:25,879 INFO cfg.OPTIMIZATION.PCT_START: 0.4
151
+ 2023-03-31 07:55:25,880 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
152
+ 2023-03-31 07:55:25,881 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
153
+ 2023-03-31 07:55:25,881 INFO cfg.OPTIMIZATION.LR_WARMUP: False
154
+ 2023-03-31 07:55:25,882 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
155
+ 2023-03-31 07:55:25,882 INFO cfg.TAG: CAGroup3D
156
+ 2023-03-31 07:55:25,883 INFO cfg.EXP_GROUP_PATH: sunrgbd_models
157
+ 2023-03-31 07:55:25,883 INFO Loading SUNRGBD dataset
158
+ 2023-03-31 07:55:26,075 INFO Total samples for SUNRGBD dataset: 5050
159
+ 2023-03-31 07:55:27,373 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train/ckpt/checkpoint_epoch_1.pth to CPU
160
+ 2023-03-31 07:55:27,909 INFO ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py60edc0c
161
+ 2023-03-31 07:55:27,980 INFO ==> Done (loaded 638/638)
162
+ 2023-03-31 07:55:28,322 INFO *************** EPOCH 1 EVALUATION *****************
163
+ 2023-03-31 11:42:57,916 INFO *************** Performance of EPOCH 1 *****************
164
+ 2023-03-31 11:42:57,916 INFO Generate label finished(sec_per_example: 2.7025 second).
165
+ 2023-03-31 11:42:57,917 INFO recall_roi_0.25: 0.000000
166
+ 2023-03-31 11:42:57,917 INFO recall_rcnn_0.25: 0.000000
167
+ 2023-03-31 11:42:57,918 INFO recall_roi_0.5: 0.000000
168
+ 2023-03-31 11:42:57,919 INFO recall_rcnn_0.5: 0.000000
169
+ 2023-03-31 11:42:57,923 INFO Average predicted number of objects(5050 samples): 55.676
170
+ 2023-03-31 11:43:27,831 INFO {'bed_AP_0.25': 0.42717495560646057, 'table_AP_0.25': 6.860281428089365e-05, 'sofa_AP_0.25': 0.011460769921541214, 'chair_AP_0.25': 0.0, 'toilet_AP_0.25': 0.0, 'desk_AP_0.25': 4.534261825028807e-05, 'dresser_AP_0.25': 0.0, 'night_stand_AP_0.25': 0.0, 'bookshelf_AP_0.25': 5.094970219943207e-06, 'bathtub_AP_0.25': 0.0, 'mAP_0.25': 0.04387547820806503, 'bed_rec_0.25': 0.6135922330097088, 'table_rec_0.25': 0.008943781942078365, 'sofa_rec_0.25': 0.13875598086124402, 'chair_rec_0.25': 0.0, 'toilet_rec_0.25': 0.0, 'desk_rec_0.25': 0.019128586609989374, 'dresser_rec_0.25': 0.0, 'night_stand_rec_0.25': 0.0, 'bookshelf_rec_0.25': 0.0035460992907801418, 'bathtub_rec_0.25': 0.0, 'mAR_0.25': 0.07839666817138005, 'bed_AP_0.50': 0.07867174595594406, 'table_AP_0.50': 0.0, 'sofa_AP_0.50': 0.0, 'chair_AP_0.50': 0.0, 'toilet_AP_0.50': 0.0, 'desk_AP_0.50': 0.0, 'dresser_AP_0.50': 0.0, 'night_stand_AP_0.50': 0.0, 'bookshelf_AP_0.50': 0.0, 'bathtub_AP_0.50': 0.0, 'mAP_0.50': 0.007867174223065376, 'bed_rec_0.50': 0.2058252427184466, 'table_rec_0.50': 0.0, 'sofa_rec_0.50': 0.0, 'chair_rec_0.50': 0.0, 'toilet_rec_0.50': 0.0, 'desk_rec_0.50': 0.0, 'dresser_rec_0.50': 0.0, 'night_stand_rec_0.50': 0.0, 'bookshelf_rec_0.50': 0.0, 'bathtub_rec_0.50': 0.0, 'mAR_0.50': 0.02058252427184466}
171
+ 2023-03-31 11:43:27,836 INFO Result is save to C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd-eval\eval\epoch_1\val\default
172
+ 2023-03-31 11:43:27,838 INFO ****************Evaluation done.*****************
eval/epoch_1/val/default/result.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d154c74d435658072254a16f0db11de0056e955de8b4ec6f05b0e49c4d3c30e7
3
+ size 42175549