2023-04-02 18:47:11,122 INFO **********************Start logging********************** 2023-04-02 18:47:11,123 INFO CUDA_VISIBLE_DEVICES=ALL 2023-04-02 18:47:11,123 INFO total_batch_size: 16 2023-04-02 18:47:11,124 INFO cfg_file cfgs/sunrgbd_models/CAGroup3D.yaml 2023-04-02 18:47:11,125 INFO batch_size 16 2023-04-02 18:47:11,126 INFO epochs 13 2023-04-02 18:47:11,127 INFO workers 4 2023-04-02 18:47:11,128 INFO extra_tag cagroup3d-win10-sunrgbd-train 2023-04-02 18:47:11,130 INFO ckpt ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth 2023-04-02 18:47:11,132 INFO pretrained_model ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth 2023-04-02 18:47:11,133 INFO launcher pytorch 2023-04-02 18:47:11,134 INFO tcp_port 18888 2023-04-02 18:47:11,136 INFO sync_bn False 2023-04-02 18:47:11,138 INFO fix_random_seed True 2023-04-02 18:47:11,139 INFO ckpt_save_interval 1 2023-04-02 18:47:11,140 INFO max_ckpt_save_num 30 2023-04-02 18:47:11,141 INFO merge_all_iters_to_one_epoch False 2023-04-02 18:47:11,142 INFO set_cfgs None 2023-04-02 18:47:11,143 INFO max_waiting_mins 0 2023-04-02 18:47:11,144 INFO start_epoch 0 2023-04-02 18:47:11,145 INFO num_epochs_to_eval 0 2023-04-02 18:47:11,147 INFO save_to_file False 2023-04-02 18:47:11,148 INFO cfg.ROOT_DIR: C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D 2023-04-02 18:47:11,148 INFO cfg.LOCAL_RANK: 0 2023-04-02 18:47:11,149 INFO cfg.CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub'] 2023-04-02 18:47:11,151 INFO cfg.DATA_CONFIG = edict() 2023-04-02 18:47:11,153 INFO cfg.DATA_CONFIG.DATASET: SunrgbdDataset 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/sunrgbd_data/sunrgbd 2023-04-02 18:47:11,155 INFO cfg.DATA_CONFIG.PROCESSED_DATA_TAG: sunrgbd_processed_data_v0_5_0 2023-04-02 18:47:11,158 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [-40, -40, -10, 40, 40, 10] 2023-04-02 18:47:11,159 INFO cfg.DATA_CONFIG.DATA_SPLIT = edict() 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train 2023-04-02 18:47:11,161 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val 2023-04-02 18:47:11,163 INFO cfg.DATA_CONFIG.REPEAT = edict() 2023-04-02 18:47:11,164 INFO cfg.DATA_CONFIG.REPEAT.train: 4 2023-04-02 18:47:11,165 INFO cfg.DATA_CONFIG.REPEAT.test: 1 2023-04-02 18:47:11,166 INFO cfg.DATA_CONFIG.INFO_PATH = edict() 2023-04-02 18:47:11,167 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['sunrgbd_infos_train.pkl'] 2023-04-02 18:47:11,169 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['sunrgbd_infos_val.pkl'] 2023-04-02 18:47:11,170 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points'] 2023-04-02 18:47:11,171 INFO cfg.DATA_CONFIG.FILTER_EMPTY_BOXES_FOR_TRAIN: True 2023-04-02 18:47:11,172 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN = edict() 2023-04-02 18:47:11,174 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,175 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TRAIN.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['y']}, {'NAME': 'random_world_rotation_mmdet3d', 'WORLD_ROT_ANGLE': [-0.523599, 0.523599]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.85, 1.15]}, {'NAME': 'random_world_translation', 'ALONG_AXIS_LIST': ['x', 'y', 'z'], 'NOISE_TRANSLATE_STD': 0.1}] 2023-04-02 18:47:11,179 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST = edict() 2023-04-02 18:47:11,180 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,182 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR_TEST.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 100000}] 2023-04-02 18:47:11,184 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR = edict() 2023-04-02 18:47:11,189 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder'] 2023-04-02 18:47:11,191 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'indoor_point_sample', 'num_points': 50000}] 2023-04-02 18:47:11,192 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict() 2023-04-02 18:47:11,193 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding 2023-04-02 18:47:11,194 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 18:47:11,195 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'r', 'g', 'b'] 2023-04-02 18:47:11,197 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': False}] 2023-04-02 18:47:11,201 INFO cfg.DATA_CONFIG._BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml 2023-04-02 18:47:11,202 INFO cfg.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,202 INFO cfg.N_CLASSES: 10 2023-04-02 18:47:11,203 INFO cfg.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,203 INFO cfg.MODEL = edict() 2023-04-02 18:47:11,205 INFO cfg.MODEL.NAME: CAGroup3D 2023-04-02 18:47:11,205 INFO cfg.MODEL.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,206 INFO cfg.MODEL.SEMANTIC_MIN_THR: 0.05 2023-04-02 18:47:11,207 INFO cfg.MODEL.SEMANTIC_ITER_VALUE: 0.02 2023-04-02 18:47:11,208 INFO cfg.MODEL.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,208 INFO cfg.MODEL.BACKBONE_3D = edict() 2023-04-02 18:47:11,210 INFO cfg.MODEL.BACKBONE_3D.NAME: BiResNet 2023-04-02 18:47:11,211 INFO cfg.MODEL.BACKBONE_3D.IN_CHANNELS: 3 2023-04-02 18:47:11,215 INFO cfg.MODEL.BACKBONE_3D.OUT_CHANNELS: 64 2023-04-02 18:47:11,215 INFO cfg.MODEL.DENSE_HEAD = edict() 2023-04-02 18:47:11,217 INFO cfg.MODEL.DENSE_HEAD.NAME: CAGroup3DHead 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.IN_CHANNELS: [64, 128, 256, 512] 2023-04-02 18:47:11,218 INFO cfg.MODEL.DENSE_HEAD.OUT_CHANNELS: 64 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.SEMANTIC_THR: 0.15 2023-04-02 18:47:11,220 INFO cfg.MODEL.DENSE_HEAD.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,221 INFO cfg.MODEL.DENSE_HEAD.N_CLASSES: 10 2023-04-02 18:47:11,223 INFO cfg.MODEL.DENSE_HEAD.N_REG_OUTS: 8 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.CLS_KERNEL: 9 2023-04-02 18:47:11,224 INFO cfg.MODEL.DENSE_HEAD.WITH_YAW: True 2023-04-02 18:47:11,225 INFO cfg.MODEL.DENSE_HEAD.USE_SEM_SCORE: False 2023-04-02 18:47:11,227 INFO cfg.MODEL.DENSE_HEAD.EXPAND_RATIO: 3 2023-04-02 18:47:11,231 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER = edict() 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.NAME: CAGroup3DAssigner 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.LIMIT: 27 2023-04-02 18:47:11,234 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.TOPK: 18 2023-04-02 18:47:11,236 INFO cfg.MODEL.DENSE_HEAD.ASSIGNER.N_SCALES: 4 2023-04-02 18:47:11,238 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET = edict() 2023-04-02 18:47:11,240 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.NAME: SmoothL1Loss 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.BETA: 0.04 2023-04-02 18:47:11,241 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.REDUCTION: sum 2023-04-02 18:47:11,243 INFO cfg.MODEL.DENSE_HEAD.LOSS_OFFSET.LOSS_WEIGHT: 0.2 2023-04-02 18:47:11,244 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX = edict() 2023-04-02 18:47:11,246 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.NAME: IoU3DLoss 2023-04-02 18:47:11,247 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.WITH_YAW: True 2023-04-02 18:47:11,249 INFO cfg.MODEL.DENSE_HEAD.LOSS_BBOX.LOSS_WEIGHT: 1.0 2023-04-02 18:47:11,250 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG = edict() 2023-04-02 18:47:11,251 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.SCORE_THR: 0.01 2023-04-02 18:47:11,253 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.NMS_PRE: 1000 2023-04-02 18:47:11,254 INFO cfg.MODEL.DENSE_HEAD.NMS_CONFIG.IOU_THR: 0.5 2023-04-02 18:47:11,254 INFO cfg.MODEL.ROI_HEAD = edict() 2023-04-02 18:47:11,256 INFO cfg.MODEL.ROI_HEAD.NAME: CAGroup3DRoIHead 2023-04-02 18:47:11,257 INFO cfg.MODEL.ROI_HEAD.NUM_CLASSES: 10 2023-04-02 18:47:11,258 INFO cfg.MODEL.ROI_HEAD.MIDDLE_FEATURE_SOURCE: [3] 2023-04-02 18:47:11,260 INFO cfg.MODEL.ROI_HEAD.GRID_SIZE: 7 2023-04-02 18:47:11,262 INFO cfg.MODEL.ROI_HEAD.VOXEL_SIZE: 0.02 2023-04-02 18:47:11,263 INFO cfg.MODEL.ROI_HEAD.COORD_KEY: 2 2023-04-02 18:47:11,264 INFO cfg.MODEL.ROI_HEAD.MLPS: [[64, 128, 128]] 2023-04-02 18:47:11,265 INFO cfg.MODEL.ROI_HEAD.CODE_SIZE: 7 2023-04-02 18:47:11,267 INFO cfg.MODEL.ROI_HEAD.ENCODE_SINCOS: True 2023-04-02 18:47:11,269 INFO cfg.MODEL.ROI_HEAD.ROI_PER_IMAGE: 128 2023-04-02 18:47:11,271 INFO cfg.MODEL.ROI_HEAD.ROI_FG_RATIO: 0.9 2023-04-02 18:47:11,272 INFO cfg.MODEL.ROI_HEAD.REG_FG_THRESH: 0.3 2023-04-02 18:47:11,275 INFO cfg.MODEL.ROI_HEAD.ROI_CONV_KERNEL: 5 2023-04-02 18:47:11,276 INFO cfg.MODEL.ROI_HEAD.ENLARGE_RATIO: False 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_IOU_LOSS: True 2023-04-02 18:47:11,277 INFO cfg.MODEL.ROI_HEAD.USE_GRID_OFFSET: False 2023-04-02 18:47:11,279 INFO cfg.MODEL.ROI_HEAD.USE_SIMPLE_POOLING: True 2023-04-02 18:47:11,280 INFO cfg.MODEL.ROI_HEAD.USE_CENTER_POOLING: True 2023-04-02 18:47:11,282 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS = edict() 2023-04-02 18:47:11,283 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_CLS_WEIGHT: 1.0 2023-04-02 18:47:11,284 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_REG_WEIGHT: 0.5 2023-04-02 18:47:11,285 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.RCNN_IOU_WEIGHT: 1.0 2023-04-02 18:47:11,286 INFO cfg.MODEL.ROI_HEAD.LOSS_WEIGHTS.CODE_WEIGHT: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] 2023-04-02 18:47:11,288 INFO cfg.MODEL.POST_PROCESSING = edict() 2023-04-02 18:47:11,290 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.25, 0.5] 2023-04-02 18:47:11,292 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: scannet 2023-04-02 18:47:11,293 INFO cfg.OPTIMIZATION = edict() 2023-04-02 18:47:11,295 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 16 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 1 2023-04-02 18:47:11,296 INFO cfg.OPTIMIZATION.OPTIMIZER: adamW 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.LR: 0.001 2023-04-02 18:47:11,298 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001 2023-04-02 18:47:11,299 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [8, 11] 2023-04-02 18:47:11,300 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1 2023-04-02 18:47:11,301 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10 2023-04-02 18:47:11,302 INFO cfg.OPTIMIZATION.PCT_START: 0.4 2023-04-02 18:47:11,303 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10 2023-04-02 18:47:11,306 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07 2023-04-02 18:47:11,307 INFO cfg.OPTIMIZATION.LR_WARMUP: False 2023-04-02 18:47:11,309 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1 2023-04-02 18:47:11,310 INFO cfg.TAG: CAGroup3D 2023-04-02 18:47:11,311 INFO cfg.EXP_GROUP_PATH: sunrgbd_models 2023-04-02 18:47:11,474 INFO Loading SUNRGBD dataset 2023-04-02 18:47:11,731 INFO Total samples for SUNRGBD dataset: 5285 2023-04-02 18:47:14,571 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:15,954 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2023-04-02 18:47:16,119 INFO ==> Done (loaded 638/638) 2023-04-02 18:47:16,286 INFO ==> Loading parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:17,535 INFO ==> Loading optimizer parameters from checkpoint ../output/sunrgbd_models/CAGroup3D/cagroup3d-win10-sunrgbd-train-good/ckpt/checkpoint_epoch_12.pth to CPU 2023-04-02 18:47:17,866 INFO ==> Done 2023-04-02 18:47:18,267 INFO DistributedDataParallel( (module): CAGroup3D( (vfe): None (backbone_3d): BiResNet( (conv1): Sequential( (0): MinkowskiConvolution(in=3, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) (relu): MinkowskiReLU() (layer1): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=64, out=64, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer2): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=64, out=128, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=64, out=128, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer3): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=256, out=256, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=256, out=512, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (compression3): Sequential( (0): MinkowskiConvolution(in=256, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (compression4): Sequential( (0): MinkowskiConvolution(in=512, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down3): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (down4): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) (layer3_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer4_): Sequential( (0): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) (1): BasicBlock( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() ) ) (layer5_): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=128, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=128, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (layer5): Sequential( (0): Bottleneck( (conv1): MinkowskiConvolution(in=512, out=512, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm1): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): MinkowskiConvolution(in=512, out=512, kernel_size=[3, 3, 3], stride=[2, 2, 2], dilation=[1, 1, 1]) (norm2): MinkowskiBatchNorm(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv3): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (norm3): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (relu): MinkowskiReLU() (downsample): Sequential( (0): MinkowskiConvolution(in=512, out=1024, kernel_size=[1, 1, 1], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) ) (spp): DAPPM( (scale1): Sequential( (0): MinkowskiAvgPooling(kernel_size=[5, 5, 5], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale2): Sequential( (0): MinkowskiAvgPooling(kernel_size=[9, 9, 9], stride=[4, 4, 4], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale3): Sequential( (0): MinkowskiAvgPooling(kernel_size=[17, 17, 17], stride=[8, 8, 8], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale4): Sequential( (0): MinkowskiAvgPooling(kernel_size=[33, 33, 33], stride=[16, 16, 16], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (scale0): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=128, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process1): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process2): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process3): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (process4): Sequential( (0): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=128, out=128, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (compression): Sequential( (0): MinkowskiBatchNorm(640, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=640, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (shortcut): Sequential( (0): MinkowskiBatchNorm(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiReLU() (2): MinkowskiConvolution(in=1024, out=256, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) ) (out): Sequential( (0): MinkowskiConvolutionTranspose(in=256, out=256, kernel_size=[2, 2, 2], stride=[2, 2, 2], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiReLU() (3): MinkowskiConvolution(in=256, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiReLU() ) ) (map_to_bev_module): None (pfe): None (backbone_2d): None (dense_head): CAGroup3DHead( (loss_centerness): CrossEntropy() (loss_bbox): IoU3DLoss() (loss_cls): FocalLoss() (loss_sem): FocalLoss() (loss_offset): SmoothL1Loss() (offset_block): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() (3): MinkowskiConvolution(in=64, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (4): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (5): MinkowskiELU() (6): MinkowskiConvolution(in=64, out=9, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) ) (feature_offset): Sequential( (0): MinkowskiConvolution(in=64, out=192, kernel_size=[3, 3, 3], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (semantic_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (centerness_conv): MinkowskiConvolution(in=64, out=1, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (reg_conv): MinkowskiConvolution(in=64, out=8, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (cls_conv): MinkowskiConvolution(in=64, out=10, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (scales): ModuleList( (0): Scale() (1): Scale() (2): Scale() (3): Scale() (4): Scale() (5): Scale() (6): Scale() (7): Scale() (8): Scale() (9): Scale() ) (cls_individual_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[9, 9, 9], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_up): ModuleList( (0): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (1): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (2): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (3): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (4): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (5): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (6): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (7): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (8): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) (9): ModuleList( (0): MinkowskiGenerativeConvolutionTranspose(in=64, out=64, kernel_size=[3, 3, 3], stride=[3, 3, 3], dilation=[1, 1, 1]) (1): Sequential( (0): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (1): MinkowskiELU() ) ) ) (cls_individual_fuse): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=128, out=64, kernel_size=[1, 1, 1], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) (cls_individual_expand_out): ModuleList( (0): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (1): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (2): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (3): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (4): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (5): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (6): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (7): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (8): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) (9): Sequential( (0): MinkowskiConvolution(in=64, out=64, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (1): MinkowskiBatchNorm(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): MinkowskiELU() ) ) ) (point_head): None (roi_head): CAGroup3DRoIHead( (iou_loss_computer): IoU3DLoss() (proposal_target_layer): ProposalTargetLayer() (reg_loss_func): WeightedSmoothL1Loss() (roi_grid_pool_layers): ModuleList( (0): SimplePoolingLayer( (grid_conv): MinkowskiConvolution(in=64, out=128, kernel_size=[5, 5, 5], stride=[1, 1, 1], dilation=[1, 1, 1]) (grid_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (grid_relu): MinkowskiELU() (pooling_conv): MinkowskiConvolution(in=128, out=128, kernel_size=[7, 7, 7], stride=[1, 1, 1], dilation=[1, 1, 1]) (pooling_bn): MinkowskiBatchNorm(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) ) ) (reg_fc_layers): Sequential( (0): Linear(in_features=128, out_features=256, bias=False) (1): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (2): ReLU() (3): Dropout(p=0.3, inplace=False) (4): Linear(in_features=256, out_features=256, bias=False) (5): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (6): ReLU() ) (reg_pred_layer): Linear(in_features=256, out_features=8, bias=True) ) ) ) 2023-04-02 18:47:18,392 INFO **********************Start training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-02 21:02:53,692 INFO Epoch [13][ 50]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6623631048202515, loss_bbox: 0.35187224864959715, loss_cls: 0.18067386567592622, loss_sem: 0.27758967235684395, loss_vote: 0.11847812041640282, one_stage_loss: 1.5909770154953002, rcnn_loss_reg: 0.3226509618759155, rcnn_loss_iou: 0.37351417541503906, loss_two_stage: 0.6961651408672332, 2023-04-02 23:14:58,782 INFO Epoch [13][ 100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630406963825226, loss_bbox: 0.35230674386024474, loss_cls: 0.1816549304127693, loss_sem: 0.22412991568446158, loss_vote: 0.11678819626569747, one_stage_loss: 1.5379204940795899, rcnn_loss_reg: 0.3200619313120842, rcnn_loss_iou: 0.3759835082292557, loss_two_stage: 0.6960454404354095, 2023-04-03 01:31:22,578 INFO Epoch [13][ 150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641919124126434, loss_bbox: 0.34244911730289457, loss_cls: 0.17572991371154786, loss_sem: 0.164187930226326, loss_vote: 0.11165566861629486, one_stage_loss: 1.4582145309448242, rcnn_loss_reg: 0.3245995166897774, rcnn_loss_iou: 0.3702506846189499, loss_two_stage: 0.6948502039909363, 2023-04-03 03:15:28,156 INFO Epoch [13][ 200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661133303642273, loss_bbox: 0.3516665494441986, loss_cls: 0.1864103177189827, loss_sem: 0.19939401865005493, loss_vote: 0.12085840627551078, one_stage_loss: 1.5194626092910766, rcnn_loss_reg: 0.3308644261956215, rcnn_loss_iou: 0.37599210619926454, loss_two_stage: 0.7068565285205841, 2023-04-03 04:48:30,413 INFO Epoch [13][ 250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6646712601184845, loss_bbox: 0.34947874903678894, loss_cls: 0.18044402152299882, loss_sem: 0.14906390145421028, loss_vote: 0.11759307235479355, one_stage_loss: 1.4612509989738465, rcnn_loss_reg: 0.31861241459846495, rcnn_loss_iou: 0.3731016290187836, loss_two_stage: 0.6917140460014344, 2023-04-03 06:21:26,423 INFO Epoch [13][ 300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6643083465099334, loss_bbox: 0.3536418664455414, loss_cls: 0.17994892954826355, loss_sem: 0.1544986192882061, loss_vote: 0.11901766777038575, one_stage_loss: 1.4714154267311097, rcnn_loss_reg: 0.32731219202280043, rcnn_loss_iou: 0.376601088643074, loss_two_stage: 0.7039132845401764, 2023-04-03 07:54:18,231 INFO Epoch [13][ 350]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622652173042297, loss_bbox: 0.34778221607208254, loss_cls: 0.17725018173456192, loss_sem: 0.26385487884283065, loss_vote: 0.11609601065516471, one_stage_loss: 1.5672485136985779, rcnn_loss_reg: 0.3184669044613838, rcnn_loss_iou: 0.36683365106582644, loss_two_stage: 0.6853005504608154, 2023-04-03 09:30:14,314 INFO Epoch [13][ 400]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.661707843542099, loss_bbox: 0.35418744444847106, loss_cls: 0.18439087867736817, loss_sem: 0.25267973288893697, loss_vote: 0.11465635925531387, one_stage_loss: 1.5676222562789917, rcnn_loss_reg: 0.32181145310401915, rcnn_loss_iou: 0.37672561407089233, loss_two_stage: 0.6985370683670044, 2023-04-03 11:03:56,627 INFO Epoch [13][ 450]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624130165576935, loss_bbox: 0.35507028639316557, loss_cls: 0.18141891568899154, loss_sem: 0.1587126612663269, loss_vote: 0.11347746297717094, one_stage_loss: 1.4710923361778259, rcnn_loss_reg: 0.3236926472187042, rcnn_loss_iou: 0.37554241478443146, loss_two_stage: 0.6992350625991821, 2023-04-03 12:35:12,815 INFO Epoch [13][ 500]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6629520893096924, loss_bbox: 0.3519792276620865, loss_cls: 0.17892935872077942, loss_sem: 0.17500929594039916, loss_vote: 0.11417005106806755, one_stage_loss: 1.483040030002594, rcnn_loss_reg: 0.3217777442932129, rcnn_loss_iou: 0.37734968066215513, loss_two_stage: 0.6991274237632752, 2023-04-03 14:10:09,972 INFO Epoch [13][ 550]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6637387633323669, loss_bbox: 0.34735734045505523, loss_cls: 0.18063713282346724, loss_sem: 0.13179368287324905, loss_vote: 0.12056573927402496, one_stage_loss: 1.4440926504135132, rcnn_loss_reg: 0.33059713900089266, rcnn_loss_iou: 0.37435609817504883, loss_two_stage: 0.7049532413482666, 2023-04-03 15:41:21,969 INFO Epoch [13][ 600]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.662292810678482, loss_bbox: 0.35720852434635164, loss_cls: 0.17849652022123336, loss_sem: 0.12923728227615355, loss_vote: 0.11629633039236069, one_stage_loss: 1.4435314631462097, rcnn_loss_reg: 0.3326093548536301, rcnn_loss_iou: 0.37626142144203184, loss_two_stage: 0.7088707709312438, 2023-04-03 17:11:28,683 INFO Epoch [13][ 650]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6618774938583374, loss_bbox: 0.35374693453311923, loss_cls: 0.18276749283075333, loss_sem: 0.144855744689703, loss_vote: 0.11687358900904656, one_stage_loss: 1.460121262073517, rcnn_loss_reg: 0.32241543173789977, rcnn_loss_iou: 0.3724362623691559, loss_two_stage: 0.6948516941070557, 2023-04-03 18:44:33,632 INFO Epoch [13][ 700]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6633472311496734, loss_bbox: 0.35507338523864745, loss_cls: 0.1834974604845047, loss_sem: 0.16129221200942992, loss_vote: 0.11933488368988038, one_stage_loss: 1.482545187473297, rcnn_loss_reg: 0.32722929924726485, rcnn_loss_iou: 0.37687767803668976, loss_two_stage: 0.7041069781780243, 2023-04-03 20:14:36,146 INFO Epoch [13][ 750]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6644761955738068, loss_bbox: 0.35398071110248563, loss_cls: 0.18030155092477798, loss_sem: 0.17029531091451644, loss_vote: 0.11823550701141357, one_stage_loss: 1.4872892904281616, rcnn_loss_reg: 0.33191990315914155, rcnn_loss_iou: 0.37786650359630586, loss_two_stage: 0.7097864115238189, 2023-04-03 21:43:57,721 INFO Epoch [13][ 800]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6641488337516784, loss_bbox: 0.3623661398887634, loss_cls: 0.17759602785110473, loss_sem: 0.13985075324773788, loss_vote: 0.12048821434378625, one_stage_loss: 1.4644499826431274, rcnn_loss_reg: 0.32571767300367355, rcnn_loss_iou: 0.37867982625961305, loss_two_stage: 0.7043974995613098, 2023-04-03 23:14:42,693 INFO Epoch [13][ 850]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6634637904167175, loss_bbox: 0.3510202074050903, loss_cls: 0.1817261689901352, loss_sem: 0.17562781766057015, loss_vote: 0.11219386965036392, one_stage_loss: 1.4840318632125855, rcnn_loss_reg: 0.3145780658721924, rcnn_loss_iou: 0.3710771632194519, loss_two_stage: 0.6856552314758301, 2023-04-04 00:46:57,991 INFO Epoch [13][ 900]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6604310703277588, loss_bbox: 0.35609620809555054, loss_cls: 0.18157291144132615, loss_sem: 0.17424873754382134, loss_vote: 0.1169225138425827, one_stage_loss: 1.4892714548110961, rcnn_loss_reg: 0.3271025702357292, rcnn_loss_iou: 0.37567222356796265, loss_two_stage: 0.7027747964859009, 2023-04-04 02:46:38,860 INFO Epoch [13][ 950]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6638546955585479, loss_bbox: 0.34598992109298704, loss_cls: 0.17896713733673095, loss_sem: 0.14396111875772477, loss_vote: 0.11255239754915237, one_stage_loss: 1.445325255393982, rcnn_loss_reg: 0.3274132317304611, rcnn_loss_iou: 0.37157038986682894, loss_two_stage: 0.69898362159729, 2023-04-04 05:08:44,516 INFO Epoch [13][1000]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6622758531570434, loss_bbox: 0.3549597650766373, loss_cls: 0.17880465477705001, loss_sem: 0.16847254008054732, loss_vote: 0.11574765816330909, one_stage_loss: 1.4802604627609253, rcnn_loss_reg: 0.32289525389671325, rcnn_loss_iou: 0.3747403818368912, loss_two_stage: 0.6976356363296509, 2023-04-04 07:33:09,320 INFO Epoch [13][1050]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6620133376121521, loss_bbox: 0.3527708554267883, loss_cls: 0.17823042571544648, loss_sem: 0.13636301800608636, loss_vote: 0.11551862224936485, one_stage_loss: 1.444896252155304, rcnn_loss_reg: 0.3306643870472908, rcnn_loss_iou: 0.38059409976005554, loss_two_stage: 0.7112584865093231, 2023-04-04 09:58:58,318 INFO Epoch [13][1100]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6630631291866302, loss_bbox: 0.34507942259311675, loss_cls: 0.1765292030572891, loss_sem: 0.17366553276777266, loss_vote: 0.11843317538499833, one_stage_loss: 1.476770441532135, rcnn_loss_reg: 0.32106285572052, rcnn_loss_iou: 0.3712770110368729, loss_two_stage: 0.6923398649692536, 2023-04-04 11:50:03,203 INFO Epoch [13][1150]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6624673461914062, loss_bbox: 0.35551845014095307, loss_cls: 0.18390144944190978, loss_sem: 0.1476328657567501, loss_vote: 0.11500328212976456, one_stage_loss: 1.4645233917236329, rcnn_loss_reg: 0.3294647446274757, rcnn_loss_iou: 0.3782592761516571, loss_two_stage: 0.7077240252494812, 2023-04-04 13:20:31,850 INFO Epoch [13][1200]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.663930526971817, loss_bbox: 0.35358040988445283, loss_cls: 0.17962905526161194, loss_sem: 0.1480906042456627, loss_vote: 0.11691673502326011, one_stage_loss: 1.462147331237793, rcnn_loss_reg: 0.31809635043144224, rcnn_loss_iou: 0.3736869865655899, loss_two_stage: 0.6917833364009858, 2023-04-04 14:50:35,089 INFO Epoch [13][1250]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6616610872745514, loss_bbox: 0.3473211169242859, loss_cls: 0.17929236128926276, loss_sem: 0.13846698969602586, loss_vote: 0.10878140345215798, one_stage_loss: 1.435522973537445, rcnn_loss_reg: 0.3105960166454315, rcnn_loss_iou: 0.36950829446315764, loss_two_stage: 0.6801043093204499, 2023-04-04 16:20:45,500 INFO Epoch [13][1300]/[1322] : lr: 1.000e-05, sem_thr: 0.05, loss_centerness: 0.6631780481338501, loss_bbox: 0.35142988979816436, loss_cls: 0.18354893177747728, loss_sem: 0.1891991038620472, loss_vote: 0.10815204933285713, one_stage_loss: 1.4955080199241637, rcnn_loss_reg: 0.3235346841812134, rcnn_loss_iou: 0.3715806418657303, loss_two_stage: 0.6951153266429901, 2023-04-04 16:58:46,259 INFO **********************End training sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-04 16:58:46,261 INFO **********************Start evaluation sunrgbd_models/CAGroup3D(cagroup3d-win10-sunrgbd-train)********************** 2023-04-04 16:58:46,262 INFO Loading SUNRGBD dataset 2023-04-04 16:58:46,521 INFO Total samples for SUNRGBD dataset: 5050 2023-04-04 16:58:46,528 INFO ==> Loading parameters from checkpoint C:\PINKAMENA\CITYU\CS5182\proj\CAGroup3D\output\sunrgbd_models\CAGroup3D\cagroup3d-win10-sunrgbd-train\ckpt\checkpoint_epoch_13.pth to CPU 2023-04-04 16:58:47,139 INFO ==> Checkpoint trained from version: pcdet+0.5.2+18bc5f5+py9059037 2023-04-04 16:58:47,218 INFO ==> Done (loaded 638/638) 2023-04-04 16:58:47,318 INFO *************** EPOCH 13 EVALUATION *****************