CLASS_NAMES: ['bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub'] DATA_CONFIG: _BASE_CONFIG_: cfgs/dataset_configs/sunrgbd_dataset.yaml VOXEL_SIZE: &VOXEL_SIZE 0.02 N_CLASSES: &N_CLASSES 10 SEMANTIC_THR: &SEMANTIC_THR 0.15 MODEL: NAME: CAGroup3D VOXEL_SIZE: *VOXEL_SIZE SEMANTIC_MIN_THR: 0.05 SEMANTIC_ITER_VALUE: 0.02 SEMANTIC_THR: *SEMANTIC_THR BACKBONE_3D: NAME: BiResNet IN_CHANNELS: 3 OUT_CHANNELS: 64 DENSE_HEAD: NAME: CAGroup3DHead IN_CHANNELS: [64, 128, 256, 512] OUT_CHANNELS: 64 SEMANTIC_THR: *SEMANTIC_THR VOXEL_SIZE: *VOXEL_SIZE N_CLASSES: *N_CLASSES N_REG_OUTS: 8 CLS_KERNEL: 9 WITH_YAW: True USE_SEM_SCORE: False EXPAND_RATIO: 3 ASSIGNER: NAME: CAGroup3DAssigner LIMIT: 27 TOPK: 18 N_SCALES: 4 LOSS_OFFSET: NAME: SmoothL1Loss BETA: 0.04 REDUCTION: sum LOSS_WEIGHT: 0.2 LOSS_BBOX: NAME: IoU3DLoss WITH_YAW: True LOSS_WEIGHT: 1.0 NMS_CONFIG: SCORE_THR: 0.01 NMS_PRE: 1000 IOU_THR: 0.5 ROI_HEAD: NAME: CAGroup3DRoIHead NUM_CLASSES: *N_CLASSES MIDDLE_FEATURE_SOURCE: [3] GRID_SIZE: 7 VOXEL_SIZE: *VOXEL_SIZE COORD_KEY: 2 MLPS: [[64,128,128]] CODE_SIZE: 7 ENCODE_SINCOS: True ROI_PER_IMAGE: 128 ROI_FG_RATIO: 0.9 REG_FG_THRESH: 0.3 ROI_CONV_KERNEL: 5 ENLARGE_RATIO: False USE_IOU_LOSS: True USE_GRID_OFFSET: False USE_SIMPLE_POOLING: True USE_CENTER_POOLING: True LOSS_WEIGHTS: RCNN_CLS_WEIGHT: 1.0 # no use RCNN_REG_WEIGHT: 0.5 RCNN_IOU_WEIGHT: 1.0 CODE_WEIGHT: [1., 1., 1., 1., 1., 1., 1., 1.] POST_PROCESSING: RECALL_THRESH_LIST: [0.25, 0.5] EVAL_METRIC: scannet OPTIMIZATION: BATCH_SIZE_PER_GPU: 16 # 4x4 or 8x2 NUM_EPOCHS: 1 #14 OPTIMIZER: adamW LR: 0.001 WEIGHT_DECAY: 0.0001 DECAY_STEP_LIST: [8, 11] LR_DECAY: 0.1 GRAD_NORM_CLIP: 10 # no use PCT_START: 0.4 DIV_FACTOR: 10 LR_CLIP: 0.0000001 LR_WARMUP: False WARMUP_EPOCH: 1