a2c-PandaReachDense-v2 / config.json
97jmlr's picture
Initial commit
5b15de5
raw
history blame
14.3 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f0892f900d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f0892f7b2c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 800000, "_total_timesteps": 800000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687686520966772990, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA21rXPv6ISTt4wQk/21rXPv6ISTt4wQk/21rXPv6ISTt4wQk/21rXPv6ISTt4wQk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaas2PHRTxz+j5vW+TBygv7Uuxr91QOi+M3ESPi5LcL50J0e/7hdJvsNvvj91Edg/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADbWtc+/ohJO3jBCT/hVZc7xlstusU6BDvbWtc+/ohJO3jBCT/hVZc7xlstusU6BDvbWtc+/ohJO3jBCT/hVZc7xlstusU6BDvbWtc+/ohJO3jBCT/hVZc7xlstusU6BDuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42061505 0.00307518 0.53810835]\n [0.42061505 0.00307518 0.53810835]\n [0.42061505 0.00307518 0.53810835]\n [0.42061505 0.00307518 0.53810835]]", "desired_goal": "[[ 0.01114927 1.5572343 -0.48027524]\n [-1.2508636 -1.5483004 -0.45361677]\n [ 0.14300995 -0.23466179 -0.77794576]\n [-0.19638035 1.4877857 1.6880327 ]]", "observation": "[[ 0.42061505 0.00307518 0.53810835 0.00461839 -0.00066131 0.00201766]\n [ 0.42061505 0.00307518 0.53810835 0.00461839 -0.00066131 0.00201766]\n [ 0.42061505 0.00307518 0.53810835 0.00461839 -0.00066131 0.00201766]\n [ 0.42061505 0.00307518 0.53810835 0.00461839 -0.00066131 0.00201766]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA7g6nvVUEVj2+mdw96GLSOgn7DL0KkJA9pt4VvkT82j3uXjs+F2gQvXkJBr2g6Ds+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.08157144 0.05225023 0.10771511]\n [ 0.00160512 -0.03441909 0.07058723]\n [-0.14635715 0.10692647 0.18297932]\n [-0.03525552 -0.03272388 0.18350458]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv+BAsTWXkYKMAWyUSzKMAXSUR0ChpE1rylN2dX2UKGgGR7/m86V+qioLaAdLMmgIR0ChpBFOGj9GdX2UKGgGR7/lvV/c32mIaAdLMmgIR0Cho9LsrupkdX2UKGgGR7/KnR9gF5fMaAdLMmgIR0Cho5kWqLjxdX2UKGgGR7/SUQ04zabnaAdLMmgIR0ChpV1o6CDmdX2UKGgGR7/U8+zMRpUQaAdLMmgIR0ChpSFkH2RJdX2UKGgGR7/LLfUF0PpZaAdLMmgIR0ChpOMMZxaQdX2UKGgGR7/htqpLmITHaAdLMmgIR0ChpKlTefqYdX2UKGgGR7/fNiYsunMuaAdLMmgIR0ChpnLZi/fwdX2UKGgGR7/VMa0hNdqtaAdLMmgIR0ChpjbWEsasdX2UKGgGR7/jhF/hESdwaAdLMmgIR0ChpfhvitJWdX2UKGgGR7/g7d8Aq/dqaAdLMmgIR0Chpb6xgRbsdX2UKGgGR7/og62fChvjaAdLMmgIR0Chp5Y6XBxhdX2UKGgGR7/ZEwWWQfZFaAdLMmgIR0Chp1or4FibdX2UKGgGR7/oWcJ+lTFVaAdLMmgIR0ChpxvD50r9dX2UKGgGR7/m14Pf8/D+aAdLMmgIR0ChpuH3Dej3dX2UKGgGR7/PHavicXnAaAdLMmgIR0ChqOCswL3LdX2UKGgGR7/UgSeyzHCGaAdLMmgIR0ChqKWCdz4ldX2UKGgGR7/cl/pdKNADaAdLMmgIR0ChqGgYxcmjdX2UKGgGR7/TyAhB7eEaaAdLMmgIR0ChqC9XtBv8dX2UKGgGR7/uveYUnG83aAdLMmgIR0Chqq9rftQbdX2UKGgGR7/X/LTx5LRKaAdLMmgIR0ChqnQqRU3odX2UKGgGR7/CKQ7tAs06aAdLMmgIR0ChqjamoBJadX2UKGgGR7/mjgIhQm/naAdLMmgIR0Chqf3YUWVNdX2UKGgGR7/hxKg7HQyAaAdLMmgIR0ChrJSBkI5YdX2UKGgGR7/bHvMKTjebaAdLMmgIR0ChrFlyzXz2dX2UKGgGR7/XjJuEVWS2aAdLMmgIR0ChrBv1tfoidX2UKGgGR7/pGZ3LV4HHaAdLMmgIR0Chq+LWqcVhdX2UKGgGR7/agKneizsyaAdLMmgIR0ChrnIV2zOYdX2UKGgGR7/ZL39JjDsMaAdLMmgIR0ChrjbdadMCdX2UKGgGR7/bipNsWO6vaAdLMmgIR0ChrfmXokiVdX2UKGgGR7/howVTJhfCaAdLMmgIR0ChrcDAaef7dX2UKGgGR7/pPhqCYkVvaAdLMmgIR0ChsF55JK8MdX2UKGgGR7/U1Gb1AZ88aAdLMmgIR0ChsCNGus90dX2UKGgGR7/mQ7tAs053aAdLMmgIR0Chr+YFqzqsdX2UKGgGR7/aUGmk30f6aAdLMmgIR0Chr607Sy+pdX2UKGgGR7/iJm29cry2aAdLMmgIR0ChsmITwlSkdX2UKGgGR7/fFOwgTyrgaAdLMmgIR0ChsicXFcY7dX2UKGgGR7/oQfQrtmcwaAdLMmgIR0Chsem+TNdJdX2UKGgGR7/ge9zwMH8kaAdLMmgIR0ChsbD1f3N+dX2UKGgGR7/TSQ5myxA0aAdLMmgIR0ChtCu6mO2idX2UKGgGR7/YtuDSPU8WaAdLMmgIR0Chs++oLofTdX2UKGgGR7/egNgBtDUmaAdLMmgIR0Chs7Esrd30dX2UKGgGR7/XInjQzDXOaAdLMmgIR0Chs3dxQzk7dX2UKGgGR7/usRxtHhCMaAdLMmgIR0ChtT/51vETdX2UKGgGR7/dVJtix3V1aAdLMmgIR0ChtQPysjmkdX2UKGgGR7/L1LamGdqdaAdLMmgIR0ChtMWdNFjNdX2UKGgGR7/RAUL2HtWuaAdLMmgIR0ChtIv4ubqhdX2UKGgGR7/jIiTt9hJAaAdLMmgIR0ChtscRlHz6dX2UKGgGR7/XVkMCtA9naAdLMmgIR0ChtosbNr0rdX2UKGgGR7/g6aLGaQV9aAdLMmgIR0Chtkz37DVIdX2UKGgGR7/Ok30f5k9VaAdLMmgIR0ChthMqSX+mdX2UKGgGR7/TD1oQFs55aAdLMmgIR0ChuDZxJd0JdX2UKGgGR7/bOxjawljWaAdLMmgIR0Cht/p9iMHbdX2UKGgGR7/dGViWmgrZaAdLMmgIR0Cht7wzk6tDdX2UKGgGR7/lbhWHUMG5aAdLMmgIR0Cht4J8WsRydX2UKGgGR7/WV1Oj7ALzaAdLMmgIR0ChubMd92HMdX2UKGgGR7/Z+BpYcNpeaAdLMmgIR0ChuXcVpKzzdX2UKGgGR7/r2EK3NLUTaAdLMmgIR0ChuTlhXr+pdX2UKGgGR7/iZtWMju8caAdLMmgIR0ChuP+otL+QdX2UKGgGR7/W8jRlYlpoaAdLMmgIR0ChutuwxFiKdX2UKGgGR7/c+X7cfvF4aAdLMmgIR0Chup+2E0zkdX2UKGgGR7/ccHGCI1tPaAdLMmgIR0ChumFZxJd0dX2UKGgGR7/RR/3FkxyoaAdLMmgIR0Chuid9+gDidX2UKGgGR7/df8/D+BH1aAdLMmgIR0Chu+u4oZyddX2UKGgGR7/RiWE9Mbm2aAdLMmgIR0Chu6+sPrfMdX2UKGgGR7/mWuxKQJXyaAdLMmgIR0Chu3FW4mTldX2UKGgGR7/liAMDwH7haAdLMmgIR0ChuzdmpVCHdX2UKGgGR7/fGTLW7OE/aAdLMmgIR0ChvPy9du50dX2UKGgGR7/ttA1NxlxwaAdLMmgIR0ChvMCo0hvBdX2UKGgGR7/YWHDaXa8IaAdLMmgIR0ChvII+fRNRdX2UKGgGR7/g8BEKE385aAdLMmgIR0ChvEhx5s0pdX2UKGgGR7/giTdLxqfwaAdLMmgIR0Chvf6JIlMRdX2UKGgGR7/w/mPo3aSLaAdLMmgIR0ChvcJDu0CzdX2UKGgGR7//yfthNM4+aAdLMmgIR0ChvYPpQk5ZdX2UKGgGR7/trncL0BfbaAdLMmgIR0ChvUnggow3dX2UKGgGR7/mLVvuPV/daAdLMmgIR0ChvwuO801qdX2UKGgGR7/rLteD3/PxaAdLMmgIR0Chvs99Ujs2dX2UKGgGR7/pqvV3EAHWaAdLMmgIR0ChvpEfkmx/dX2UKGgGR7/w0rkKeCkHaAdLMmgIR0ChvldFF2FGdX2UKGgGR7/7QCOmzjWDaAdLMmgIR0ChwBX49HMEdX2UKGgGR7/fEtdzGPxQaAdLMmgIR0Chv9nnlnyvdX2UKGgGR7/gqhtcfNiZaAdLMmgIR0Chv5uG0u14dX2UKGgGR7/jK1XvH93saAdLMmgIR0Chv2GlQ/HHdX2UKGgGR7/xZCfHxSYPaAdLMmgIR0ChwSc2itaIdX2UKGgGR7/gpPIn0CiiaAdLMmgIR0ChwOsxwhnrdX2UKGgGR7/ob2tdRiw0aAdLMmgIR0ChwK0IkZ75dX2UKGgGR7/jJfICEHt4aAdLMmgIR0ChwHNJvo/zdX2UKGgGR7/i1bzK9wm3aAdLMmgIR0Chwl1qnFYMdX2UKGgGR7/ra7/XGwRoaAdLMmgIR0ChwiIAwPAgdX2UKGgGR7/6SvcJtzjnaAdLMmgIR0ChweOvllshdX2UKGgGR7/kwUpNKyv+aAdLMmgIR0ChwanVPN3XdX2UKGgGR7/udDhLoOhCaAdLMmgIR0Chw2Wn889wdX2UKGgGR7/luJUHY6GQaAdLMmgIR0ChwymITGo8dX2UKGgGR7/4qePJaJQ+aAdLMmgIR0ChwustsenydX2UKGgGR7/hFD4QBgeBaAdLMmgIR0ChwrFINEw4dX2UKGgGR7/xWm+CbtqpaAdLMmgIR0ChxJAsK9f1dX2UKGgGR7/ZD3/Pw/gSaAdLMmgIR0ChxFQpvxYrdX2UKGgGR7/owVbiZOSGaAdLMmgIR0ChxBXRgJC0dX2UKGgGR7/w6mj0th/iaAdLMmgIR0Chw9yLqD9PdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.21.0"}}