A1abz commited on
Commit
5c8f1e9
·
1 Parent(s): 7744cbd

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 251.90 +/- 20.06
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb91749eb00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb91749eb90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb91749ec20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb91749ecb0>", "_build": "<function ActorCriticPolicy._build at 0x7fb91749ed40>", "forward": "<function ActorCriticPolicy.forward at 0x7fb91749edd0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb91749ee60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb91749eef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb91749ef80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb91749f010>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb91749f0a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb91749f130>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb9174936c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687426131289975360, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOMAL7eQZs/r18Mv0Uxz76Dgh++TouQvgAAAAAAAAAAs8a6PcfWlz64DeO9PSlUvujHDL3mRjQ8AAAAAAAAAAAAEKK7vhW0P5w+AL9KWja+KwK8OwBl6D0AAAAAAAAAAE32Vz0/770/i2biPrN6JT4XYP48/lNGPgAAAAAAAAAAc7HwvTeTTz+zyOK9yWCuvo0PGr4W9hA9AAAAAAAAAABm/oe7eyaSuhbBibjy5oOzpUgdOeBZnzcAAIA/AACAPzPlOLyY4IY/TKIrvfqgnL5kyvM8krzPvAAAAAAAAAAAM2ZzPWw/Ej5LNts9m1Nwvl3hzjzG4MY8AAAAAAAAAABToC0+9EyBPut5tr3UPgm+jSqlvPlMnb0AAAAAAAAAAEAQhz6NSPU+kxRYvhcCab7vgiw8sok/vQAAAAAAAAAAQIEYvruGUj+9cmS9RLiavmTDxL2lX4Q9AAAAAAAAAADgEQM+bP+FuyBSJjunwr24vC/UvIjvWboAAAAAAACAPwBcDz2yn6g/puyzPQHNub4JDNs9DsKgvAAAAAAAAAAAjWOCvX7esz9CPKi+b2Bcvvilhb3tEKm9AAAAAAAAAACaOoC9j2xjPaL/lT126YK+eb6LPF1Nv7wAAAAAAAAAAM35J72P3m26GiWos4QzLi9TQ0i7y8ytMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9Z1ie/YaqMAWyUTT0BjAF0lEdAkr/pW7voeXV9lChoBkdAcZIhYeT3ZmgHTQoCaAhHQJLTZrl/6O51fZQoaAZHQG8qsdkrf+FoB01PAWgIR0CS0+PikwevdX2UKGgGR0BxEX9jwx33aAdNfwFoCEdAktQW0AtFrnV9lChoBkdAb2FPppvgnGgHTYcBaAhHQJLUFqCYkVx1fZQoaAZHQHDgb0aqCH1oB00bAWgIR0CS1LsUZeiSdX2UKGgGR0BwLWV5a/yoaAdNOwFoCEdAktUFVtGd7XV9lChoBkdAcZFUFjd56mgHTYcBaAhHQJLW7Yf4h2Z1fZQoaAZHQG5SxVAAyVRoB02QAWgIR0CS13yIHkcTdX2UKGgGR0Bu0gwIt16maAdNTgFoCEdAktfAeRxLkHV9lChoBkdAcP7TfR/mT2gHTZABaAhHQJLYjLNfPX11fZQoaAZHQG4h/Yao/A1oB01cAWgIR0CS2WtWuHN5dX2UKGgGR0Bwdn6qKgqWaAdNawFoCEdAkttruQZGa3V9lChoBkdAcJH5dGAkLWgHTR8BaAhHQJLbpxsEaEV1fZQoaAZHQHAQHaBZpztoB01HAWgIR0CS3F7xusLfdX2UKGgGR0ByBK6pYLb6aAdNXQFoCEdAktzm8h9srXV9lChoBkfABNgFX7tRemgHTQUBaAhHQJLdmHerMkh1fZQoaAZHQGAfk8zQ/otoB03oA2gIR0CS3flZHNHIdX2UKGgGR0BGw5fdAPd3aAdNDgFoCEdAkt5SwbEP2HV9lChoBkdAbquhGpda+2gHTUIBaAhHQJLgA8OkLx91fZQoaAZHQGvbdOZb6gxoB01PAWgIR0CS4FhmGucMdX2UKGgGR0BxAEO9WZJDaAdNEQFoCEdAkuJbBj4Ho3V9lChoBkdAbRzjsD4gzWgHTXEBaAhHQJLimdGy5Zt1fZQoaAZHQHB16VUuL75oB015AWgIR0CS4qQp4KQadX2UKGgGR0BuyyXv6TGHaAdNhgFoCEdAkuUr+o99t3V9lChoBkdAcG45ZbILgGgHTXgBaAhHQJLlLDUExIt1fZQoaAZHQHIJ6kIomXxoB01zAWgIR0CS5T7EpAlfdX2UKGgGR0Bw/y6reZXuaAdNTQFoCEdAkuWKOgg5inV9lChoBkdAbyESFoL5RGgHTTMBaAhHQJLmaz6ab4J1fZQoaAZHQG7H6J66aspoB006AWgIR0CS5t41P3zudX2UKGgGR0By1U065oXbaAdNYQFoCEdAkum460Y0mHV9lChoBkdAbMzZuAI6bWgHTVMBaAhHQJLpyZlWfbt1fZQoaAZHQGxsULtu1ndoB000AWgIR0CS6kxDb8FZdX2UKGgGR0BxIaaDwpfAaAdNVgFoCEdAkurK94/u9nV9lChoBkdAbIGLS/j81mgHTTIBaAhHQJLsmRRuTA51fZQoaAZHQHB5uFtbcGloB02bAWgIR0CS7rYMfA9FdX2UKGgGR0BvCU4ecQRPaAdNRgFoCEdAkvED5oGpuXV9lChoBkdAclMCqIacZ2gHTVcBaAhHQJLyckNWluZ1fZQoaAZHQEDhLlFMIu5oB00UAWgIR0CS8wg13t8edX2UKGgGR0BvnLpC8e0YaAdNaQFoCEdAkvOOIEbHZXV9lChoBkdAcEri0OVgQmgHTSgBaAhHQJLznviLl3h1fZQoaAZHQG70Tho/RmdoB02pAWgIR0CS86vzOHFhdX2UKGgGR0BwklEQXhwVaAdNRgFoCEdAkvUTO5avBHV9lChoBkdAceTaQFLWZ2gHTVcBaAhHQJL4UHVwxWV1fZQoaAZHQHECkehf0EpoB01wAWgIR0CS+PoFFDv3dX2UKGgGR0BvU8xyn1nNaAdNWQFoCEdAkvr7mMfignV9lChoBkdAb8fa5f+jumgHTVMBaAhHQJL7NhCtzS11fZQoaAZHQHDGTCP6sQxoB01MAWgIR0CS/MWCmMwUdX2UKGgGR0BuOMlkYoAoaAdNowFoCEdAkv3GwFC9iHV9lChoBkdARn3ZRKpT/GgHS/hoCEdAkw7Iod+5OXV9lChoBkdAbqo7/4qPO2gHTWkBaAhHQJMP2FtbcGl1fZQoaAZHQHLC1CXyAhBoB00qAWgIR0CTEFS5iExqdX2UKGgGR0Bwi8Tj/+85aAdNYgFoCEdAkxE5/0/W2HV9lChoBkdAb1y7T2FnI2gHTWYCaAhHQJMRkJKJ2uB1fZQoaAZHQHIbuKjzqbBoB01UAWgIR0CTEaEzfrKOdX2UKGgGR0Bumc9IPK+0aAdNRQFoCEdAkxHHAEdNnHV9lChoBkdAcXLn27FsHmgHTYABaAhHQJMT1G3F1jl1fZQoaAZHQHCJzS5RTCNoB01xAWgIR0CTFGprk8zRdX2UKGgGR0BxuWfHxSYPaAdNOQFoCEdAkxSxe5WilHV9lChoBkdAcCnpmEoOQWgHTUABaAhHQJMVTNjbzsh1fZQoaAZHQEm+G8Empl1oB0vsaAhHQJMVuSU1Q691fZQoaAZHQGy3yEcsDnxoB009AWgIR0CTFso2XLNfdX2UKGgGR0BweN90A93baAdNHAFoCEdAkxhXqJMxoXV9lChoBkdAcEmFTefqYGgHTdkCaAhHQJMaPIIWxhV1fZQoaAZHQG6C1g6U7jloB00nAWgIR0CTGxOrhisodX2UKGgGR0Bv3K0jTrmhaAdNHAFoCEdAkxvttZV4o3V9lChoBkdAbX0oybhFVmgHTboBaAhHQJMcBUdaMaV1fZQoaAZHQHDPBDgIhQpoB00pAWgIR0CTHLI7vG6xdX2UKGgGR0Bu5VgfEGaAaAdNNgFoCEdAkx0RLPD503V9lChoBkdAccDeRgZ0jmgHTUEBaAhHQJMdIO5J9Rd1fZQoaAZHQGtJ25hBqsVoB02KAWgIR0CTHpNnXd0rdX2UKGgGR0Buatg6U7jlaAdNxgFoCEdAkx/NUXHim3V9lChoBkdAcGeXJo0yg2gHTVgBaAhHQJMgtJaq0dB1fZQoaAZHQHDy0kjX4CZoB01EAWgIR0CTIOBYmsvJdX2UKGgGR0ByBYuFpPAPaAdNRQFoCEdAkyIXCwbEP3V9lChoBkdAbv96ZYxL02gHTUMBaAhHQJMjjdxhlUZ1fZQoaAZHQHCcPhESdvtoB03AAWgIR0CTJkh+vyLAdX2UKGgGR0Bwj6Q2dd3TaAdNWwFoCEdAkyb5prULD3V9lChoBkdAa9PvGZNO/WgHTT4BaAhHQJMoDHEMspZ1fZQoaAZHQG0xbZ39rGloB00hAWgIR0CTKJO2RaHLdX2UKGgGR0ByGMzBRAKOaAdN3AFoCEdAkyk/f8/D+HV9lChoBkdAbqXs0HhS+GgHTUcBaAhHQJMpkVeruIB1fZQoaAZHQHESYV/MGHJoB01CAWgIR0CTKlp35eqrdX2UKGgGR0BvlWIsRQJpaAdNMgFoCEdAkyrR1oxpL3V9lChoBkdAcECGFSKm9GgHTTYBaAhHQJMrFSEUTL51fZQoaAZHQELsbHZK3/hoB00FAWgIR0CTLaJDE3sHdX2UKGgGR0Bt5bDZUT+OaAdNfQFoCEdAky4Ke05U+HV9lChoBkdAbyxkXDWK/GgHTT8BaAhHQJMwWPXCj1x1fZQoaAZHQG4xEN4JNTNoB01bAWgIR0CTMH9ZRsMzdX2UKGgGR0BxQTrhR64UaAdNOAFoCEdAkzHTKYAsCnV9lChoBkdAcXReDWbw0GgHTbcBaAhHQJMzPXYlIEt1fZQoaAZHQG96tZ/0/W1oB00sAWgIR0CTNPlVcUuddX2UKGgGR0Bssol0HQhPaAdNIQFoCEdAkzW7p3X7L3V9lChoBkdAb03ghKUVz2gHTY4BaAhHQJM2lxlxwQ11fZQoaAZHQHJZ7onrpq1oB01sAWgIR0CTN8FDv3JxdX2UKGgGR0Bv/5XuE25yaAdNLwFoCEdAkzhEs4DLbHV9lChoBkdAcE4Cgbp/w2gHTTYBaAhHQJM4vPD50r91fZQoaAZHQHFX3KnvUjNoB01XAWgIR0CTOMhakhzOdX2UKGgGR0ByM9olD4QCaAdNTwFoCEdAkzkQsTWXknV9lChoBkdAcX5uuieum2gHTXwBaAhHQJM5ZDneSB91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e26973960ae3c4490dcee953abc3a454e318d82cd89f474cdf90671f52efc6f1
3
+ size 146755
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb91749eb00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb91749eb90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb91749ec20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb91749ecb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb91749ed40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb91749edd0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb91749ee60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb91749eef0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb91749ef80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb91749f010>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb91749f0a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb91749f130>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fb9174936c0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1687426131289975360,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOMAL7eQZs/r18Mv0Uxz76Dgh++TouQvgAAAAAAAAAAs8a6PcfWlz64DeO9PSlUvujHDL3mRjQ8AAAAAAAAAAAAEKK7vhW0P5w+AL9KWja+KwK8OwBl6D0AAAAAAAAAAE32Vz0/770/i2biPrN6JT4XYP48/lNGPgAAAAAAAAAAc7HwvTeTTz+zyOK9yWCuvo0PGr4W9hA9AAAAAAAAAABm/oe7eyaSuhbBibjy5oOzpUgdOeBZnzcAAIA/AACAPzPlOLyY4IY/TKIrvfqgnL5kyvM8krzPvAAAAAAAAAAAM2ZzPWw/Ej5LNts9m1Nwvl3hzjzG4MY8AAAAAAAAAABToC0+9EyBPut5tr3UPgm+jSqlvPlMnb0AAAAAAAAAAEAQhz6NSPU+kxRYvhcCab7vgiw8sok/vQAAAAAAAAAAQIEYvruGUj+9cmS9RLiavmTDxL2lX4Q9AAAAAAAAAADgEQM+bP+FuyBSJjunwr24vC/UvIjvWboAAAAAAACAPwBcDz2yn6g/puyzPQHNub4JDNs9DsKgvAAAAAAAAAAAjWOCvX7esz9CPKi+b2Bcvvilhb3tEKm9AAAAAAAAAACaOoC9j2xjPaL/lT126YK+eb6LPF1Nv7wAAAAAAAAAAM35J72P3m26GiWos4QzLi9TQ0i7y8ytMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAQAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG9Z1ie/YaqMAWyUTT0BjAF0lEdAkr/pW7voeXV9lChoBkdAcZIhYeT3ZmgHTQoCaAhHQJLTZrl/6O51fZQoaAZHQG8qsdkrf+FoB01PAWgIR0CS0+PikwevdX2UKGgGR0BxEX9jwx33aAdNfwFoCEdAktQW0AtFrnV9lChoBkdAb2FPppvgnGgHTYcBaAhHQJLUFqCYkVx1fZQoaAZHQHDgb0aqCH1oB00bAWgIR0CS1LsUZeiSdX2UKGgGR0BwLWV5a/yoaAdNOwFoCEdAktUFVtGd7XV9lChoBkdAcZFUFjd56mgHTYcBaAhHQJLW7Yf4h2Z1fZQoaAZHQG5SxVAAyVRoB02QAWgIR0CS13yIHkcTdX2UKGgGR0Bu0gwIt16maAdNTgFoCEdAktfAeRxLkHV9lChoBkdAcP7TfR/mT2gHTZABaAhHQJLYjLNfPX11fZQoaAZHQG4h/Yao/A1oB01cAWgIR0CS2WtWuHN5dX2UKGgGR0Bwdn6qKgqWaAdNawFoCEdAkttruQZGa3V9lChoBkdAcJH5dGAkLWgHTR8BaAhHQJLbpxsEaEV1fZQoaAZHQHAQHaBZpztoB01HAWgIR0CS3F7xusLfdX2UKGgGR0ByBK6pYLb6aAdNXQFoCEdAktzm8h9srXV9lChoBkfABNgFX7tRemgHTQUBaAhHQJLdmHerMkh1fZQoaAZHQGAfk8zQ/otoB03oA2gIR0CS3flZHNHIdX2UKGgGR0BGw5fdAPd3aAdNDgFoCEdAkt5SwbEP2HV9lChoBkdAbquhGpda+2gHTUIBaAhHQJLgA8OkLx91fZQoaAZHQGvbdOZb6gxoB01PAWgIR0CS4FhmGucMdX2UKGgGR0BxAEO9WZJDaAdNEQFoCEdAkuJbBj4Ho3V9lChoBkdAbRzjsD4gzWgHTXEBaAhHQJLimdGy5Zt1fZQoaAZHQHB16VUuL75oB015AWgIR0CS4qQp4KQadX2UKGgGR0BuyyXv6TGHaAdNhgFoCEdAkuUr+o99t3V9lChoBkdAcG45ZbILgGgHTXgBaAhHQJLlLDUExIt1fZQoaAZHQHIJ6kIomXxoB01zAWgIR0CS5T7EpAlfdX2UKGgGR0Bw/y6reZXuaAdNTQFoCEdAkuWKOgg5inV9lChoBkdAbyESFoL5RGgHTTMBaAhHQJLmaz6ab4J1fZQoaAZHQG7H6J66aspoB006AWgIR0CS5t41P3zudX2UKGgGR0By1U065oXbaAdNYQFoCEdAkum460Y0mHV9lChoBkdAbMzZuAI6bWgHTVMBaAhHQJLpyZlWfbt1fZQoaAZHQGxsULtu1ndoB000AWgIR0CS6kxDb8FZdX2UKGgGR0BxIaaDwpfAaAdNVgFoCEdAkurK94/u9nV9lChoBkdAbIGLS/j81mgHTTIBaAhHQJLsmRRuTA51fZQoaAZHQHB5uFtbcGloB02bAWgIR0CS7rYMfA9FdX2UKGgGR0BvCU4ecQRPaAdNRgFoCEdAkvED5oGpuXV9lChoBkdAclMCqIacZ2gHTVcBaAhHQJLyckNWluZ1fZQoaAZHQEDhLlFMIu5oB00UAWgIR0CS8wg13t8edX2UKGgGR0BvnLpC8e0YaAdNaQFoCEdAkvOOIEbHZXV9lChoBkdAcEri0OVgQmgHTSgBaAhHQJLznviLl3h1fZQoaAZHQG70Tho/RmdoB02pAWgIR0CS86vzOHFhdX2UKGgGR0BwklEQXhwVaAdNRgFoCEdAkvUTO5avBHV9lChoBkdAceTaQFLWZ2gHTVcBaAhHQJL4UHVwxWV1fZQoaAZHQHECkehf0EpoB01wAWgIR0CS+PoFFDv3dX2UKGgGR0BvU8xyn1nNaAdNWQFoCEdAkvr7mMfignV9lChoBkdAb8fa5f+jumgHTVMBaAhHQJL7NhCtzS11fZQoaAZHQHDGTCP6sQxoB01MAWgIR0CS/MWCmMwUdX2UKGgGR0BuOMlkYoAoaAdNowFoCEdAkv3GwFC9iHV9lChoBkdARn3ZRKpT/GgHS/hoCEdAkw7Iod+5OXV9lChoBkdAbqo7/4qPO2gHTWkBaAhHQJMP2FtbcGl1fZQoaAZHQHLC1CXyAhBoB00qAWgIR0CTEFS5iExqdX2UKGgGR0Bwi8Tj/+85aAdNYgFoCEdAkxE5/0/W2HV9lChoBkdAb1y7T2FnI2gHTWYCaAhHQJMRkJKJ2uB1fZQoaAZHQHIbuKjzqbBoB01UAWgIR0CTEaEzfrKOdX2UKGgGR0Bumc9IPK+0aAdNRQFoCEdAkxHHAEdNnHV9lChoBkdAcXLn27FsHmgHTYABaAhHQJMT1G3F1jl1fZQoaAZHQHCJzS5RTCNoB01xAWgIR0CTFGprk8zRdX2UKGgGR0BxuWfHxSYPaAdNOQFoCEdAkxSxe5WilHV9lChoBkdAcCnpmEoOQWgHTUABaAhHQJMVTNjbzsh1fZQoaAZHQEm+G8Empl1oB0vsaAhHQJMVuSU1Q691fZQoaAZHQGy3yEcsDnxoB009AWgIR0CTFso2XLNfdX2UKGgGR0BweN90A93baAdNHAFoCEdAkxhXqJMxoXV9lChoBkdAcEmFTefqYGgHTdkCaAhHQJMaPIIWxhV1fZQoaAZHQG6C1g6U7jloB00nAWgIR0CTGxOrhisodX2UKGgGR0Bv3K0jTrmhaAdNHAFoCEdAkxvttZV4o3V9lChoBkdAbX0oybhFVmgHTboBaAhHQJMcBUdaMaV1fZQoaAZHQHDPBDgIhQpoB00pAWgIR0CTHLI7vG6xdX2UKGgGR0Bu5VgfEGaAaAdNNgFoCEdAkx0RLPD503V9lChoBkdAccDeRgZ0jmgHTUEBaAhHQJMdIO5J9Rd1fZQoaAZHQGtJ25hBqsVoB02KAWgIR0CTHpNnXd0rdX2UKGgGR0Buatg6U7jlaAdNxgFoCEdAkx/NUXHim3V9lChoBkdAcGeXJo0yg2gHTVgBaAhHQJMgtJaq0dB1fZQoaAZHQHDy0kjX4CZoB01EAWgIR0CTIOBYmsvJdX2UKGgGR0ByBYuFpPAPaAdNRQFoCEdAkyIXCwbEP3V9lChoBkdAbv96ZYxL02gHTUMBaAhHQJMjjdxhlUZ1fZQoaAZHQHCcPhESdvtoB03AAWgIR0CTJkh+vyLAdX2UKGgGR0Bwj6Q2dd3TaAdNWwFoCEdAkyb5prULD3V9lChoBkdAa9PvGZNO/WgHTT4BaAhHQJMoDHEMspZ1fZQoaAZHQG0xbZ39rGloB00hAWgIR0CTKJO2RaHLdX2UKGgGR0ByGMzBRAKOaAdN3AFoCEdAkyk/f8/D+HV9lChoBkdAbqXs0HhS+GgHTUcBaAhHQJMpkVeruIB1fZQoaAZHQHESYV/MGHJoB01CAWgIR0CTKlp35eqrdX2UKGgGR0BvlWIsRQJpaAdNMgFoCEdAkyrR1oxpL3V9lChoBkdAcECGFSKm9GgHTTYBaAhHQJMrFSEUTL51fZQoaAZHQELsbHZK3/hoB00FAWgIR0CTLaJDE3sHdX2UKGgGR0Bt5bDZUT+OaAdNfQFoCEdAky4Ke05U+HV9lChoBkdAbyxkXDWK/GgHTT8BaAhHQJMwWPXCj1x1fZQoaAZHQG4xEN4JNTNoB01bAWgIR0CTMH9ZRsMzdX2UKGgGR0BxQTrhR64UaAdNOAFoCEdAkzHTKYAsCnV9lChoBkdAcXReDWbw0GgHTbcBaAhHQJMzPXYlIEt1fZQoaAZHQG96tZ/0/W1oB00sAWgIR0CTNPlVcUuddX2UKGgGR0Bssol0HQhPaAdNIQFoCEdAkzW7p3X7L3V9lChoBkdAb03ghKUVz2gHTY4BaAhHQJM2lxlxwQ11fZQoaAZHQHJZ7onrpq1oB01sAWgIR0CTN8FDv3JxdX2UKGgGR0Bv/5XuE25yaAdNLwFoCEdAkzhEs4DLbHV9lChoBkdAcE4Cgbp/w2gHTTYBaAhHQJM4vPD50r91fZQoaAZHQHFX3KnvUjNoB01XAWgIR0CTOMhakhzOdX2UKGgGR0ByM9olD4QCaAdNTwFoCEdAkzkQsTWXknV9lChoBkdAcX5uuieum2gHTXwBaAhHQJM5ZDneSB91ZS4="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdff2a59342096f4c22fcfa770c3e7912e8f30c609e5d5534db10cdd686e0fb1
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:94f082fb6030064a781db7c4ad6329d12c191a06cb1dc1e4eb6c5bb4bcf83488
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (202 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 251.89762690018992, "std_reward": 20.06486316037099, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-22T10:22:28.180952"}