File size: 5,268 Bytes
3356903
3eb93dd
3356903
 
 
 
 
3eb93dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3356903
 
 
 
 
 
 
 
 
 
 
 
ddb5d59
3356903
 
 
028be72
3356903
028be72
3356903
 
9fd1bb6
 
 
3356903
 
028be72
3356903
 
 
 
 
f7034e4
3356903
 
 
 
 
 
 
 
 
 
 
f7034e4
3356903
 
 
3eb93dd
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
license: other
library_name: transformers
tags:
- mergekit
- merge
- not-for-all-audiences
base_model:
- Nitral-AI/Infinitely-Laydiculous-7B
model-index:
- name: Infinite-Laymons-9B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.61
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.14
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 54.87
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 80.82
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 53.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ABX-AI/Infinite-Laymons-9B
      name: Open LLM Leaderboard
---
# GGUF / IQ / Imatrix for [Infinite-Laymons-9B](https://huggingface.co/ABX-AI/Infinite-Laymons-9B)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/65d936ad52eca001fdcd3245/_Tgq278Uqjns2W0ug1kXE.png)

**Why Importance Matrix?**

**Importance Matrix**, at least based on my testing, has shown to improve the output and performance of "IQ"-type quantizations, where the compression becomes quite heavy.
The **Imatrix** performs a calibration, using a provided dataset. Testing has shown that semi-randomized data can help perserve more important segments as the compression is applied.

Related discussions in Github:
[[1]](https://github.com/ggerganov/llama.cpp/discussions/5006) [[2]](https://github.com/ggerganov/llama.cpp/discussions/5263#discussioncomment-8395384)

The imatrix.txt file that I used contains general, semi-random data, with some custom kink.

# Infinite-Laymons-9B

Infinite-Laymons-9B is intended for fictional role-play and storytelling. 

The focus is on original responses and elimitation, or reduction of refusals.

## Merge Details

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* [Nitral-AI/Infinitely-Laydiculous-7B](https://huggingface.co/Nitral-AI/Infinitely-Laydiculous-7B)
* [ABX-AI/Infinite-Laymons-7B](https://huggingface.co/ABX-AI/Infinite-Laymons-7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
      - model: Nitral-AI/Infinitely-Laydiculous-7B
        layer_range: [0, 20]
  - sources:
      - model: ABX-AI/Infinite-Laymons-7B
        layer_range: [12, 32]
merge_method: passthrough
dtype: float16
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ABX-AI__Infinite-Laymons-9B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.29|
|AI2 Reasoning Challenge (25-Shot)|65.61|
|HellaSwag (10-Shot)              |84.14|
|MMLU (5-Shot)                    |64.53|
|TruthfulQA (0-shot)              |54.87|
|Winogrande (5-shot)              |80.82|
|GSM8k (5-shot)                   |53.75|