LunarLander_v2_try_1 / config.json
ACOS's picture
LunarLander-v2 trained agent 1st try
579f1fc
raw
history blame
13.7 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7d60d8941ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7d60d8941b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7d60d8941bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7d60d8941c60>", "_build": "<function ActorCriticPolicy._build at 0x7d60d8941cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7d60d8941d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7d60d8941e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7d60d8941ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7d60d8941f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7d60d8941fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7d60d8942050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7d60d89420e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7d60d893a7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000001, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690026475403317510, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0sBj1e+7M/r0OfPXXby76lC4g9vruVPQAAAAAAAAAAGqRfPVy3eLqf5Ec219nLMbbH9DorDGa1AACAPwAAgD+GsmO+qT6/PmZlB76aJYO+OYH5vWNAX70AAAAAAAAAAIBBbD1yJkU/raJqvTKPz74nr7C8+DfNvQAAAAAAAAAAhtl5vqEdzD0aVhY+z3wdvuAc8bz8FDY9AAAAAAAAAABgFI0+untmvdE7yLkljcQ41/fGvt3+EjkAAIA/AACAP3Os9T1lIbE/Bmf5PkzCsL7WiRE+bT1wPgAAAAAAAAAA82aRvgOGDj1qT666MoVxObTJgb6optQ5AACAPwAAAADzsa29zTgMPvHvvz0C9gm+GtGauxqZ8DwAAAAAAAAAAOoUiL64KNi7w1WHPcCTdL3+Cg48l6SmPgAAgD8AAIA/I6OqPmaWID/ykS2+HLC6vrJyhz0AXt+8AAAAAAAAAABNg3E97AmquWwdPrcEVJy1sVWvuy5vazYAAIA/AACAPwZFMD50YMk+imUCvmsqg77a9LA81oJcPQAAAAAAAAAAmiQHvQMLdz1+zZW9MP1MvqfCfb3jRwm8AAAAAAAAAAAAmvS94VCaupcioTSxyAsxXbaOO4GCibMAAIA/AACAP/O+hz4MPaA+lp0jvvxhnL6YbfC8hkmHvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.01580698419301574, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGqEjkdWACMAWyUTRwBjAF0lEdAqneoP3BYWHV9lChoBkdAa1Jl6qsEJWgHTR0BaAhHQKp4YC6pYLd1fZQoaAZHQG5CDC53C9BoB00sAWgIR0CqeG+KbaysdX2UKGgGR8BCio8IRh+faAdL0WgIR0CqeVyO7xusdX2UKGgGR0BxkuODJ2dNaAdNTgFoCEdAqnmUDSw4bXV9lChoBkdAbezL26ClJ2gHTSkBaAhHQKqFgR2bG3p1fZQoaAZHQG0RzibUgB9oB00IAWgIR0CqhYZhrnDBdX2UKGgGR0BfB0VafSQYaAdN6ANoCEdAqoYhMJx//nV9lChoBkdARj2n62v0RWgHS7RoCEdAqodI+GGmDXV9lChoBkdAbd7DRc/t6WgHTXYBaAhHQKqIcOZLIxR1fZQoaAZHQHAzQcLjPv9oB00UAWgIR0CqiOh+OOsDdX2UKGgGR0BvOfktEofCaAdNPgFoCEdAqonfocJdB3V9lChoBkdAbTxAvcrRSmgHTQsBaAhHQKqKXRgJC0F1fZQoaAZHQHHP4p+c6NloB00QAWgIR0CqimzQmeDndX2UKGgGR0BXEAHZ9NN8aAdN6ANoCEdAqotT7Ikqt3V9lChoBkdAbb0fJ3gUDmgHTRkBaAhHQKqL5b3XZoR1fZQoaAZHQHHHFZHNHH5oB00SAWgIR0CqjIL5qM3qdX2UKGgGR0BulmfdyksSaAdNGQFoCEdAqoypmVZ9u3V9lChoBkdAS0NMCcPOIWgHS+doCEdAqo0colUp/nV9lChoBkdAccxVObiIcmgHTSkBaAhHQKqNgmBOHnF1fZQoaAZHQHBI8WO6unxoB02+AmgIR0CqjnBXjlxPdX2UKGgGR0Bf6lgH/tIDaAdN6ANoCEdAqo8koWpIc3V9lChoBkdAbGTfUnXummgHTR4BaAhHQKqPL9vS+g11fZQoaAZHQG/bPYODrZ9oB00OAWgIR0CqjzeKKpDNdX2UKGgGR0BwNddVvMr3aAdNBQFoCEdAqo/Ig1WKdnV9lChoBkdAB5n7pFCswWgHS+doCEdAqpBa+rU9ZHV9lChoBkdAb2onw5NoJ2gHTRIBaAhHQKqQfLg4wRJ1fZQoaAZHQHAkyJCSidtoB00gAmgIR0CqkVUOEug6dX2UKGgGR0BjAxeb/ffoaAdN6ANoCEdAqpIb+BH09XV9lChoBkdAbtOH/tICl2gHTV8BaAhHQKqSLM+NcW11fZQoaAZHQG/zHm7rcCZoB00aAWgIR0Cqkoi9ytFKdX2UKGgGR0BwQbbGm1pkaAdNTgFoCEdAqpMGKdhAnnV9lChoBkdAcCIMWXTmXGgHTTYBaAhHQKqTMsCDEm91fZQoaAZHQHBQhzmwJPZoB01jAWgIR0CqlJRvNu+AdX2UKGgGR0Be0SBoVVPvaAdN6ANoCEdAqpTZ/XoTwnV9lChoBkdAcLVGA08/2WgHTUMBaAhHQKqVfnYg7o11fZQoaAZHQG/fq0dBBzFoB00lAWgIR0CqlYjg62fDdX2UKGgGR0BruHWhAWzoaAdNAgFoCEdAqpaEJIDoyXV9lChoBkdAbhSXgtOEd2gHTUQBaAhHQKqWoSHM2WJ1fZQoaAZHQBmTh5xBE8doB0vuaAhHQKqXCGJN0vJ1fZQoaAZHQHHrmkN4JNVoB02oAWgIR0Cqly2rwOOKdX2UKGgGR0BvJpuqFRHgaAdNKgFoCEdAqpd2PeYUnHV9lChoBkdAcG1RSP2f02gHTZUBaAhHQKqaDuhK15V1fZQoaAZHQHBvc36yjYZoB00OAWgIR0Cqmpy/KyOadX2UKGgGR0Bv/vXumaYvaAdNPQFoCEdAqpqk9yLhrHV9lChoBkdAbk0AZKnNxGgHTSsBaAhHQKqauQcxTKl1fZQoaAZHQHD9radtl7NoB00cAWgIR0Cqm1Lh73PBdX2UKGgGR0BvfIzabnX/aAdL+mgIR0CqnFJFCswMdX2UKGgGR0BxZdD8cdYGaAdNHQFoCEdAqp2P6CUX53V9lChoBkdAbNueEIw/PmgHTQEBaAhHQKqdpIlMRHx1fZQoaAZHQECPTnaFmFtoB0vtaAhHQKqd6nx8UmF1fZQoaAZHQHCv7qptJnRoB0v5aAhHQKqd9HWBjF11fZQoaAZHQHJKkPpY9xJoB01eAWgIR0CqqFDaPCEYdX2UKGgGR0BxVSVopQUIaAdNGQFoCEdAqqhU3yZrpXV9lChoBkdAcFRbuMMqjWgHTUoBaAhHQKqooFK02Lp1fZQoaAZHQG6HRqoIfKZoB02OAmgIR0CqqVbdrO7hdX2UKGgGR0BwrA03wTdtaAdNIQJoCEdAqqnnvUjLS3V9lChoBkdAbRgIJqqOtGgHTRYBaAhHQKqq6IJqqOt1fZQoaAZHQHAZ2uPmxMZoB002AWgIR0Cqq0BXS0BwdX2UKGgGR0BwfgbdadMCaAdNLgFoCEdAqqvvJ3gUDnV9lChoBkdAb1OhysCDEmgHTVYBaAhHQKqsaH2ys0Z1fZQoaAZHQHBkYGY8dPtoB00sAWgIR0CqrOqJVKf4dX2UKGgGR0AtQtQKrq+raAdNCAFoCEdAqq1y4MF2V3V9lChoBkdAbf5oSL61s2gHTRABaAhHQKquEi+L3sZ1fZQoaAZHQHDF7fcer+5oB00TAWgIR0Cqri/9pAUtdX2UKGgGR0AgxEIgNgBtaAdL+GgIR0CqrjTH0btJdX2UKGgGR0BsoK/fwZwXaAdNBgFoCEdAqq4y+HrQgXV9lChoBkdAcITh4t6HCWgHTS8BaAhHQKqvEUNayKN1fZQoaAZHQG+IT4DcM3JoB01YAWgIR0Cqr2H0se4kdX2UKGgGR0Bx20CuEEkjaAdNFgFoCEdAqrB1UVBUrHV9lChoBkdAbTgDfWMCLmgHS/NoCEdAqrFS0lZ5iXV9lChoBkdAa5pRaX8fm2gHTQwBaAhHQKqxlJnxri51fZQoaAZHQHC5ooqkM1FoB01mAWgIR0CqsgHbh3qzdX2UKGgGR0BvSOjh1klNaAdNGwFoCEdAqrRBcC5mRXV9lChoBkdAb8yab4Ju22gHTS4BaAhHQKq19rjYI0J1fZQoaAZHQHEH3M6ij+JoB002AWgIR0Cqtvi0WuYAdX2UKGgGR8ATteSjgydnaAdL7GgIR0Cqt0FRgqmTdX2UKGgGR0BtGTRnezlcaAdNKgFoCEdAqrd4Ap8WsXV9lChoBkdAb3phQ3xWk2gHTS4BaAhHQKq3kDvmYBx1fZQoaAZHQEW1h2nsLORoB00KAWgIR0Cqt6fbCaZydX2UKGgGR0Bu0xuMuOCHaAdNoAFoCEdAqrgII4VARnV9lChoBkdAcAlbDdgv12gHS/toCEdAqrh8lZ5iVnV9lChoBkdAE13S8an752gHS9doCEdAqrjVdLQHA3V9lChoBkdAcNKLGJememgHTRMBaAhHQKq56cAiml91fZQoaAZHQHAoRWxQizNoB02VAWgIR0CqufElVtGedX2UKGgGR0Bwr/iYLLIQaAdNvANoCEdAqrptJOFg2XV9lChoBkdAcPMR8MNMG2gHTQUBaAhHQKq7aPbwjMV1fZQoaAZHQGyFgN5MURFoB038AWgIR0CqvBgQxvehdX2UKGgGR0BxjgyZa3ZxaAdNHQFoCEdAqrzm1rqMWHV9lChoBkdAMHUtdzGPxWgHS8loCEdAqr2EeU6gd3V9lChoBkdAcIFmz0HyE2gHTQoBaAhHQKq91ZqVQhx1fZQoaAZHQHALgQ176YVoB00lAWgIR0CqvdoMSbpedX2UKGgGR0BfGuO801qGaAdN6ANoCEdAqr4ZvLowEnV9lChoBkdAb6U5tm+TNmgHTSwBaAhHQKq+O2hIvrZ1fZQoaAZHQG9k8UuctoVoB00zAWgIR0CqvpELx7RfdX2UKGgGR0BxdZjhDPWyaAdNPwFoCEdAqr9Qprk8zXV9lChoBkdAcPsBKL8762gHTTYBaAhHQKq/iURnOB11fZQoaAZHQG7bOAy2x6hoB01gAWgIR0Cqv5BlMAWBdX2UKGgGR0BuL5KpT/ACaAdNPgFoCEdAqsDlWGRFJHV9lChoBkdAcQkaakRBeGgHTTYBaAhHQKrBOcOskpt1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}