ACOS's picture
Upload ppo lunarlander-v2 Try 4
3fc0eb2
raw
history blame
13.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b87bfaf24d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b87bfaf2560>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b87bfaf25f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b87bfaf2680>", "_build": "<function ActorCriticPolicy._build at 0x7b87bfaf2710>", "forward": "<function ActorCriticPolicy.forward at 0x7b87bfaf27a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b87bfaf2830>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b87bfaf28c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b87bfaf2950>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b87bfaf29e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b87bfaf2a70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b87bfaf2b00>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b87bfaeee00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690092096488325744, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2izz13NH8+dx2UvnORgL5dFMG9iqitvQAAAAAAAAAAsybiPZyKXj/JukE+CdL6vtck9z2IjIM9AAAAAAAAAAAAL9G8oVxEPwLCYz05KNi+LC6avLpqgj0AAAAAAAAAAFoeoL1sk2o/HMw/PZPb0L7zpy2+5xsdPgAAAAAAAAAAAP22vQ7gBz8wHcE+Cf/ovtjLsj1yk5g+AAAAAAAAAAANgsq91s8VPxKegz6dyd++NrIPPhZWDD4AAAAAAAAAAAASjLwxY7U/HmATvjbP3r07zKy8M/ucvQAAAAAAAAAA5p+QPn2OVD9cDwE+XAAQv1ZPAT+6gMa9AAAAAAAAAAAaDWW9ILFxP3KA9D2hCfa+k4aPvTCtBT4AAAAAAAAAANp/xL3qDg8/7otpPqPmvb5AF6e9OqdQPgAAAAAAAAAAzcyrOzcjtT//8Qc/FOo/PvfZxrttWfa9AAAAAAAAAABmJqe6CYVhPlItzrxBoqK+HanRPMPSNzsAAAAAAAAAAGBKgD5qQmQ/QnucvM5/8L42xbE+xm4EvgAAAAAAAAAAGlI7Pa7J5zvvLJm6bCV3vtMClD2uroS9AAAAAAAAAACaznm9jNhYPgA0Oj6aubS+9hYuPpoPdzsAAAAAAAAAAM2KVLybV4Q9GP4DPMQ0Yr7I16c8q5FjvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAABAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHENCKR+z+qMAWyUS+2MAXSUR0CilmPRJEpidX2UKGgGR0ByijeANG3GaAdL5mgIR0Ciln8ebNKRdX2UKGgGR0Bx3rU+cH4XaAdL8mgIR0Ciltry+YdAdX2UKGgGR0BwKN8pkPMCaAdL2WgIR0Cil8BcAzYVdX2UKGgGR0BwcNiExqO+aAdL6GgIR0Cil9mplz2fdX2UKGgGR0BxakFqzqrzaAdL42gIR0CimBzlT3qSdX2UKGgGR0BwGNgPVd5ZaAdL3mgIR0CimELYoRZmdX2UKGgGR0ByUF9ZzPrwaAdL8mgIR0CimMsFlkH2dX2UKGgGR0BvA8dq+JxeaAdNGwFoCEdAopjozpHI63V9lChoBkdAb6Ah8IAwPGgHS+toCEdAoplAZdfLLnV9lChoBkdAc4mRVZLZjGgHS8doCEdAoplQ2606YHV9lChoBkdActLqFRHf/GgHTREBaAhHQKKZUvM8ox51fZQoaAZHQBjQte2NNrVoB0umaAhHQKKZbyU9pyp1fZQoaAZHQHJJjqGDcudoB0vQaAhHQKKZpmEGqxV1fZQoaAZHQHGgThHbypdoB0v1aAhHQKKZrNHH3lF1fZQoaAZHQHLiG5c1O0toB0v9aAhHQKKZ8Oq//Nt1fZQoaAZHQG6Vogmqo61oB0vcaAhHQKKalIOH3111fZQoaAZHQHIdQBcRlH1oB0vqaAhHQKKasUQkHD91fZQoaAZHQHARYAwPAfxoB0vbaAhHQKKazGJemel1fZQoaAZHQHJrBTjvNNdoB0vcaAhHQKKbcGfPHDJ1fZQoaAZHQHLi3jENvwVoB0vTaAhHQKKbjUc4o7V1fZQoaAZHQHGFT7yhBZ9oB0v3aAhHQKKbyjAzpHJ1fZQoaAZHQHHkpJbt7a9oB0vdaAhHQKKcF6By0a91fZQoaAZHQHNcIwRGtp5oB00GAWgIR0CinDUqQRwqdX2UKGgGR0BxhN1wHZ9NaAdL0GgIR0CipfEIgNgCdX2UKGgGR0ByYg7muDBeaAdL+2gIR0Cipg8rAgxKdX2UKGgGR0BzfgNCqp97aAdL8GgIR0CipjeTvAoHdX2UKGgGR0Bx5+F36hxpaAdNAAFoCEdAoqaWYjSofnV9lChoBkdAcVTyzollb2gHS+toCEdAoqamFBY3enV9lChoBkdAculjEehf0GgHS+5oCEdAoqaqbjLjgnV9lChoBkdActAZ9/jKgmgHTQkBaAhHQKKmu5tm+TN1fZQoaAZHQHCr1baAWi1oB0vuaAhHQKKnAR+z+m51fZQoaAZHQHBRhAGB4D9oB0vLaAhHQKKnTTLns9l1fZQoaAZHQHBSfBi1AqxoB0vWaAhHQKKnUy31BdF1fZQoaAZHQG6WonjQzDZoB0veaAhHQKKnpww0wal1fZQoaAZHQG7R1mjCYTloB0vXaAhHQKKojkNFz+51fZQoaAZHQG3ksL4N7SloB0v3aAhHQKKor3gUDdR1fZQoaAZHQHK6gRXfZVZoB0vDaAhHQKKor4agmJF1fZQoaAZHQHH8qWPcSGtoB0vUaAhHQKKozSYw7DF1fZQoaAZHQHEmoZ62OQ1oB0v6aAhHQKKo1qzqrzZ1fZQoaAZHQHPGYUN8VpNoB0vVaAhHQKKpHEJjUd91fZQoaAZHQHDyIh2W6bxoB0vnaAhHQKKphWbPQfJ1fZQoaAZHQHDQswg1WKdoB0vQaAhHQKKpyBjnV5N1fZQoaAZHQHIvuSr5qM5oB0vtaAhHQKKpz4VRDTl1fZQoaAZHQHFca2WpqAVoB0veaAhHQKKp+WqtHQR1fZQoaAZHQHIvNZFG5MFoB0vpaAhHQKKqDVYp2EF1fZQoaAZHQHG8le8f3exoB0vUaAhHQKKqJhKlHjJ1fZQoaAZHQHDdWKQ7tAtoB0vUaAhHQKKqdIq9XcR1fZQoaAZHQHD9y6cy31BoB00AAWgIR0CiqnyR8twrdX2UKGgGR0BzJIzabnX/aAdL3WgIR0CiqpSeAd4ndX2UKGgGR0BwMZ0aIeo2aAdL9mgIR0Ciq0WpqASWdX2UKGgGR0BBopCrtE5RaAdLmGgIR0Ciq1i+L3sYdX2UKGgGR0BwW1VFQVKxaAdL0mgIR0Ciq6yoOx0NdX2UKGgGR0Bx+n4ZdfLLaAdL1WgIR0Ciq/5P2wmmdX2UKGgGR0BzWAEmplz2aAdL4GgIR0CirAW/BWPtdX2UKGgGR0BwscwsXizcaAdL3WgIR0CirCIXCTEBdX2UKGgGR0ByfsHD7655aAdL+WgIR0CirFtbC79RdX2UKGgGR0Bx4/g3tKI0aAdL22gIR0CirLQjt5UtdX2UKGgGR0Bz0wb5uZTiaAdLyGgIR0CirNOhTOxCdX2UKGgGR0ByEERzzVc2aAdL2WgIR0CirOe7UXpGdX2UKGgGR0BzO9sCT2WZaAdL7mgIR0CirVmYSg5BdX2UKGgGR0ByIUMDwH7haAdL8mgIR0CireAFxGUfdX2UKGgGR0Bv+hrvb48EaAdL72gIR0CirfOS4e90dX2UKGgGR0BwEtj9XLeRaAdL2mgIR0CirjfRmbsodX2UKGgGR0Bu70jFAE+xaAdL42gIR0Cirj5XdTHbdX2UKGgGR0BttRbjcVQAaAdL6GgIR0CirkaJyhi9dX2UKGgGR0Bz0AGJN0vHaAdLz2gIR0Cir2sj/uLKdX2UKGgGR0Byu+kgwGnoaAdL6mgIR0Cir3VclgMMdX2UKGgGR0BxLpq0tyxSaAdL6WgIR0Cir4DKYAsDdX2UKGgGR0BzECTC+De1aAdLzmgIR0Cir92qT8pDdX2UKGgGR0ByaljLB9CvaAdL2mgIR0CisCSPU8V6dX2UKGgGR0BysNrdnCfpaAdL8GgIR0CisMmO2iL3dX2UKGgGR0Bxp8z+FUQ1aAdL32gIR0CisMnTRYzSdX2UKGgGR0BwxBOVPepGaAdL5GgIR0CisWTKcNH6dX2UKGgGR0Bw4iqlxffGaAdL4mgIR0CisakD6nBMdX2UKGgGR0Bxa9cAzYVZaAdLz2gIR0CisbrpaA4GdX2UKGgGR0BxIg5MlC1JaAdL72gIR0CisdVkUbkwdX2UKGgGR0BzQXSfDk2haAdL0GgIR0CisiwUYbbUdX2UKGgGR0Bxtp6AvtdBaAdL5GgIR0CisqqzAvcrdX2UKGgGR0BxBfLTx5LRaAdL3GgIR0CisskuYhMbdX2UKGgGR0BxSEAmzBykaAdL52gIR0Cisv0ExIrfdX2UKGgGR0BwvlPbfxc3aAdL9WgIR0Cisz+fh/AkdX2UKGgGR0BwKewu/UONaAdL02gIR0Cis9ZDqnm8dX2UKGgGR0BzgEyxiXpoaAdL2WgIR0Cis/gIIF/ydX2UKGgGR0BwUViiItUXaAdL9GgIR0CitK9l/YrbdX2UKGgGR0Bx49Mtbs4UaAdNBAFoCEdAorSy7ROUMXV9lChoBkdAbu8i5d4VymgHS9xoCEdAorT6bSZ0CHV9lChoBkdAcTVrLyMDOmgHS/9oCEdAorUPt4RmLHV9lChoBkdAcynSXt0FKWgHS+1oCEdAorU88gZCOXV9lChoBkdAbZobvPTodWgHS91oCEdAorVs9+w1SHV9lChoBkdAcb+yAxzq8mgHS9doCEdAorWld/rjYXV9lChoBkdAcNOd8iOea2gHS+doCEdAorXUu6ErXnV9lChoBkdAcSj4u9OARWgHS/FoCEdAorXvz8P4EnV9lChoBkdAU+uG1x82JmgHS5VoCEdAorYqmKqGUXV9lChoBkdAcd8DG96C2GgHS+VoCEdAorYl09yLh3V9lChoBkdAcwqup0fYBmgHS9RoCEdAorY9e2NNrXV9lChoBkdAc4iNjslb/2gHS8hoCEdAorZIU1yeZ3V9lChoBkdAcr3H5JsfrGgHS9hoCEdAorZjS/j81nV9lChoBkdAbv5cFhXr+2gHS+RoCEdAorbUOf/WD3V9lChoBkdAc23bxmTTv2gHS8loCEdAorbu9rXUY3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}