--- base_model: - tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1 - BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B library_name: transformers tags: - merge - mergekit language: - ja - en --- # Llama 3.1 Swallow Gen 8B v0.1 Llama 3.1 Swallow Gen 8B v0.1 is a merge of the following models using [Mergekit](https://github.com/arcee-ai/mergekit): * [tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) * [BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B](https://huggingface.co/BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B) ## 🧩 Configuration ```yaml base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1 models: - model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1 # No parameters necessary for base model - model: BAAI/Infinity-Instruct-7M-Gen-Llama3_1-8B parameters: density: 0.5 weight: 1 merge_method: dare_ties parameters: int8_mask: true tokenizer_source: union dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "AELLM/llama-3.1-swallow-gen-8b-v0.1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```