HamidBekam
commited on
Commit
·
9621c6a
1
Parent(s):
53fbbaa
Update README.md
Browse files
README.md
CHANGED
@@ -37,7 +37,7 @@ Then you can use the model like this:
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
39 |
|
40 |
-
model = SentenceTransformer('
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
@@ -60,8 +60,8 @@ def cls_pooling(model_output, attention_mask):
|
|
60 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
61 |
|
62 |
# Load model from HuggingFace Hub
|
63 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
64 |
-
model = AutoModel.from_pretrained('
|
65 |
|
66 |
# Tokenize sentences
|
67 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
|
|
37 |
from sentence_transformers import SentenceTransformer
|
38 |
sentences = ["This is an example sentence", "Each sentence is converted"]
|
39 |
|
40 |
+
model = SentenceTransformer('AI-Growth-Lab/PatentSBERTa')
|
41 |
embeddings = model.encode(sentences)
|
42 |
print(embeddings)
|
43 |
```
|
|
|
60 |
sentences = ['This is an example sentence', 'Each sentence is converted']
|
61 |
|
62 |
# Load model from HuggingFace Hub
|
63 |
+
tokenizer = AutoTokenizer.from_pretrained('AI-Growth-Lab/PatentSBERTa')
|
64 |
+
model = AutoModel.from_pretrained('AI-Growth-Lab/PatentSBERTa')
|
65 |
|
66 |
# Tokenize sentences
|
67 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|