HamidBekam commited on
Commit
9621c6a
·
1 Parent(s): 53fbbaa

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -37,7 +37,7 @@ Then you can use the model like this:
37
  from sentence_transformers import SentenceTransformer
38
  sentences = ["This is an example sentence", "Each sentence is converted"]
39
 
40
- model = SentenceTransformer('{MODEL_NAME}')
41
  embeddings = model.encode(sentences)
42
  print(embeddings)
43
  ```
@@ -60,8 +60,8 @@ def cls_pooling(model_output, attention_mask):
60
  sentences = ['This is an example sentence', 'Each sentence is converted']
61
 
62
  # Load model from HuggingFace Hub
63
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
64
- model = AutoModel.from_pretrained('{MODEL_NAME}')
65
 
66
  # Tokenize sentences
67
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
37
  from sentence_transformers import SentenceTransformer
38
  sentences = ["This is an example sentence", "Each sentence is converted"]
39
 
40
+ model = SentenceTransformer('AI-Growth-Lab/PatentSBERTa')
41
  embeddings = model.encode(sentences)
42
  print(embeddings)
43
  ```
 
60
  sentences = ['This is an example sentence', 'Each sentence is converted']
61
 
62
  # Load model from HuggingFace Hub
63
+ tokenizer = AutoTokenizer.from_pretrained('AI-Growth-Lab/PatentSBERTa')
64
+ model = AutoModel.from_pretrained('AI-Growth-Lab/PatentSBERTa')
65
 
66
  # Tokenize sentences
67
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')