File size: 1,507 Bytes
043067a
 
 
 
 
 
 
 
 
 
 
 
 
fe74baa
043067a
c431173
 
c77a7c6
 
49de547
77774bf
bd0cdd9
49de547
c431173
84d6333
c431173
 
 
 
 
 
 
 
 
 
 
 
 
 
a6fae2a
13a0ef6
 
 
 
 
a6fae2a
13a0ef6
525e4de
c431173
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
license: apache-2.0
datasets:
- AIAT/Kiddee-data1234
language:
- th
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: table-question-answering
tags:
- code
- openthaigpt
---
--- 
## license: apache-2.0

![KIDDEE](https://media.discordapp.net/attachments/1226897965927497818/1235837202945151016/KIDDEE-Logoo.png?ex=6635d295&is=66348115&hm=8ea3f9706dcdc7b459919d03d5bdb59c06912425efcff8f3979efa93c9e7549e&=&format=webp&quality=lossless&width=437&height=437)

## Tag
- openthaigpt/openthaigpt-1.0.0-13b-chat

## Datasets:
  - (https://huggingface.co/datasets/AIAT/Kiddee-data1234)
    
## language:
  - th
  - en
## metrics:
  - accuracy 0.53 
  - response time 2.440
    
## pipeline_tag: 
  - table-question-answering

## tags:
- OpenthaiGPT-13b
- LLMModel

This repository contains code and resources for building a Question Answering (QA) system using the Retrieval-Augmented Generation (RAG) approach with the Language Learning Model (LLM).

## Introduction

RAG-QA combines the power of retrieval-based models with generative models to provide accurate and diverse answers to a given question. LLM, a state-of-the-art language model, is used for generation within the RAG framework.

# sponser
![image/png](https://media.discordapp.net/attachments/1226897965927497818/1235842881520930857/image.png?ex=6635d7df&is=6634865f&hm=be4eb57b51de9f52f0817a88fdd2461b5312d0a013bd022630b2a8dde717976f&=&format=webp&quality=lossless&width=687&height=402)
  
library_name: adapter-transformers
---