kkatiz commited on
Commit
c80ce94
1 Parent(s): 6250d67

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -7
README.md CHANGED
@@ -12,16 +12,41 @@ pipeline_tag: text-generation
12
  fine-tuned from [sea-lion-7b-instruct](aisingapore/sea-lion-7b-instruct) with question-pandas expression pairs.
13
 
14
  ## How to use:
15
- ```python
16
  from transformers import AutoModelForCausalLM, AutoTokenizer
17
- from peft import PeftModel
18
 
19
- base_model = "aisingapore/sea-lion-7b-instruct"
20
- adapter_model = "AIAT/Optimizer-sealion2pandas"
 
 
 
 
 
 
 
 
 
 
21
 
22
- model = AutoModelForCausalLM.from_pretrained(base_model, trust_remote_code=True)
23
- model = PeftModel.from_pretrained(model, adapter_model, trust_remote_code=True)
24
- tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  ```
26
 
27
  # sponser
 
12
  fine-tuned from [sea-lion-7b-instruct](aisingapore/sea-lion-7b-instruct) with question-pandas expression pairs.
13
 
14
  ## How to use:
15
+ ```python
16
  from transformers import AutoModelForCausalLM, AutoTokenizer
17
+ import pandas as pd
18
 
19
+ tokenizer = AutoTokenizer.from_pretrained("aisingapore/sea-lion-7b-instruct", trust_remote_code=True)
20
+ model = AutoModelForCausalLM.from_pretrained("aisingapore/sea-lion-7b-instruct", trust_remote_code=True)
21
+
22
+ df = pd.read_csv("Your csv..")
23
+
24
+ prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n"
25
+
26
+ prompt = """\
27
+ You are working with a pandas dataframe in Python.
28
+ The name of the dataframe is `df`.
29
+ This is the result of `print(df.head())`:
30
+ {df_str}
31
 
32
+ Follow these instructions:
33
+ 1. Convert the query to executable Python code using Pandas.
34
+ 2. The final line of code should be a Python expression that can be called with the `eval()` function.
35
+ 3. The code should represent a solution to the query.
36
+ 4. PRINT ONLY THE EXPRESSION.
37
+ 5. Do not quote the expression.
38
+ Query: {query_str} """
39
+
40
+ def create_prompt(query_str, df):
41
+ text = prompt.format(df_str=str(df.head()), query_str=query_str)
42
+ text = prompt_template.format(human_prompt=text)
43
+ return text
44
+
45
+ full_prompt = create_prompt("Find test ?", df)
46
+
47
+ tokens = tokenizer(full_prompt, return_tensors="pt")
48
+ output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id)
49
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
50
  ```
51
 
52
  # sponser