--- language: - th - en license: mit base_model: aisingapore/sea-lion-7b-instruct datasets: - AIAT/Optimizer-datasetfinal pipeline_tag: text-generation --- ## Sea-lion2pandas fine-tuned from [sea-lion-7b-instruct](aisingapore/sea-lion-7b-instruct) with question-pandas expression pairs. ## How to use: ```python from transformers import AutoModelForCausalLM, AutoTokenizer import pandas as pd tokenizer = AutoTokenizer.from_pretrained("aisingapore/sea-lion-7b-instruct", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("aisingapore/sea-lion-7b-instruct", trust_remote_code=True) df = pd.read_csv("Your csv..") prompt_template = "### USER:\n{human_prompt}\n\n### RESPONSE:\n" prompt = """\ You are working with a pandas dataframe in Python. The name of the dataframe is `df`. This is the result of `print(df.head())`: {df_str} Follow these instructions: 1. Convert the query to executable Python code using Pandas. 2. The final line of code should be a Python expression that can be called with the `eval()` function. 3. The code should represent a solution to the query. 4. PRINT ONLY THE EXPRESSION. 5. Do not quote the expression. Query: {query_str} """ def create_prompt(query_str, df): text = prompt.format(df_str=str(df.head()), query_str=query_str) text = prompt_template.format(human_prompt=text) return text full_prompt = create_prompt("Find test ?", df) tokens = tokenizer(full_prompt, return_tensors="pt") output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id) print(tokenizer.decode(output[0], skip_special_tokens=True)) ``` # sponser ![image/png](https://media.discordapp.net/attachments/1226897965927497818/1235842881520930857/image.png?ex=6635d7df&is=6634865f&hm=be4eb57b51de9f52f0817a88fdd2461b5312d0a013bd022630b2a8dde717976f&=&format=webp&quality=lossless&width=687&height=402)