--- license: apache-2.0 datasets: - AIAT/Pangpuriye-dataset language: - th - en pipeline_tag: text-generation tags: - code_generation --- Example inference using huggingface transformers. ```python from transformers import AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer import pandas as pd def get_prediction(raw_prediction): if "[/INST]" in raw_prediction: index = raw_prediction.index("[/INST]") return raw_prediction[index + 7:] return raw_prediction tokenizer = LlamaTokenizer.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("AIAT/Pangpuriye-openthaigpt-1.0.0-7b-chat", trust_remote_code=True) schema = """your SQL schema""" query = "หาจำนวนลูกค้าที่เป็นเพศชาย" prompt = f""" [INST] <> You are a question answering assistant. Answer the question as truthful and helpful as possible คุณคือผู้ช่วยตอบคำถาม จงตอบคำถามอย่างถูกต้องและมีประโยชน์ที่สุด <> {schema}### (sql extract) {query} [/INST] """ tokens = tokenizer(prompt, return_tensors="pt") output = model.generate(tokens["input_ids"], max_new_tokens=20, eos_token_id=tokenizer.eos_token_id) print(get_prediction(tokenizer.decode(output[0], skip_special_tokens=True))) ```