渊旷
commited on
Commit
•
7bfcf76
1
Parent(s):
7ed4dfb
- README.md +32 -3
- model_index.json +24 -0
- scheduler/scheduler.py +227 -0
- scheduler/scheduler_config.json +6 -0
- text_encoder/config.json +24 -0
- text_encoder/model.fp16.safetensors +3 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +38 -0
- tokenizer/vocab.json +0 -0
- transformer/config.json +22 -0
- transformer/diffusion_pytorch_model.fp16.safetensors +3 -0
- transformer/diffusion_pytorch_model.safetensors +3 -0
- transformer/transformer.py +1215 -0
- vqvae/config.json +39 -0
- vqvae/diffusion_pytorch_model.fp16.safetensors +3 -0
- vqvae/diffusion_pytorch_model.safetensors +3 -0
README.md
CHANGED
@@ -1,3 +1,32 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-to-image
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- Non-Autoregressive
|
6 |
+
---
|
7 |
+
|
8 |
+
# Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis
|
9 |
+
|
10 |
+
[Paper](https://arxiv.org/abs/2410.08261) | [Model](https://huggingface.co/MeissonFlow/Meissonic) | [Code](https://github.com/viiika/Meissonic) | [Demo](https://huggingface.co/spaces/MeissonFlow/meissonic)
|
11 |
+
|
12 |
+
|
13 |
+
![demo](./assets/demos.png)
|
14 |
+
|
15 |
+
|
16 |
+
## Introduction
|
17 |
+
Meissonic is a non-autoregressive mask image modeling text-to-image synthesis model that can generate high-resolution images. It is designed to run on consumer graphics cards.
|
18 |
+
|
19 |
+
## Usage
|
20 |
+
|
21 |
+
Please refer to [github link](https://github.com/viiika/Meissonic).
|
22 |
+
|
23 |
+
## Citation
|
24 |
+
If you find this work helpful, please consider citing:
|
25 |
+
```bibtex
|
26 |
+
@article{bai2024meissonic,
|
27 |
+
title={Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis},
|
28 |
+
author={Bai, Jinbin and Ye, Tian and Chow, Wei and Song, Enxin and Chen, Qing-Guo and Li, Xiangtai and Dong, Zhen and Zhu, Lei and Yan, Shuicheng},
|
29 |
+
journal={arXiv preprint arXiv:2410.08261},
|
30 |
+
year={2024}
|
31 |
+
}
|
32 |
+
```
|
model_index.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Pipeline",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"scheduler": [
|
5 |
+
"scheduler",
|
6 |
+
"Scheduler"
|
7 |
+
],
|
8 |
+
"text_encoder": [
|
9 |
+
"transformers",
|
10 |
+
"CLIPTextModelWithProjection"
|
11 |
+
],
|
12 |
+
"tokenizer": [
|
13 |
+
"transformers",
|
14 |
+
"CLIPTokenizer"
|
15 |
+
],
|
16 |
+
"transformer": [
|
17 |
+
"transformer",
|
18 |
+
"Transformer2DModel"
|
19 |
+
],
|
20 |
+
"vqvae": [
|
21 |
+
"diffusers",
|
22 |
+
"VQModel"
|
23 |
+
]
|
24 |
+
}
|
scheduler/scheduler.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team and The MeissonFlow Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from diffusers.utils import BaseOutput
|
22 |
+
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
23 |
+
import torch.nn.functional as F
|
24 |
+
|
25 |
+
def gumbel_noise(t, generator=None):
|
26 |
+
device = generator.device if generator is not None else t.device
|
27 |
+
noise = torch.zeros_like(t, device=device).uniform_(0, 1, generator=generator).to(t.device)
|
28 |
+
return -torch.log((-torch.log(noise.clamp(1e-20))).clamp(1e-20))
|
29 |
+
|
30 |
+
|
31 |
+
def mask_by_random_topk(mask_len, probs, temperature=1.0, generator=None):
|
32 |
+
confidence = torch.log(probs.clamp(1e-20)) + temperature * gumbel_noise(probs, generator=generator)
|
33 |
+
sorted_confidence = torch.sort(confidence, dim=-1).values
|
34 |
+
cut_off = torch.gather(sorted_confidence, 1, mask_len.long())
|
35 |
+
masking = confidence < cut_off
|
36 |
+
return masking
|
37 |
+
|
38 |
+
|
39 |
+
@dataclass
|
40 |
+
class SchedulerOutput(BaseOutput):
|
41 |
+
"""
|
42 |
+
Output class for the scheduler's `step` function output.
|
43 |
+
|
44 |
+
Args:
|
45 |
+
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
46 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
47 |
+
denoising loop.
|
48 |
+
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
49 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
50 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
51 |
+
"""
|
52 |
+
|
53 |
+
prev_sample: torch.Tensor
|
54 |
+
pred_original_sample: torch.Tensor = None
|
55 |
+
|
56 |
+
|
57 |
+
class Scheduler(SchedulerMixin, ConfigMixin):
|
58 |
+
order = 1
|
59 |
+
|
60 |
+
temperatures: torch.Tensor
|
61 |
+
|
62 |
+
@register_to_config
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
mask_token_id: int,
|
66 |
+
masking_schedule: str = "cosine",
|
67 |
+
):
|
68 |
+
self.temperatures = None
|
69 |
+
self.timesteps = None
|
70 |
+
|
71 |
+
def set_timesteps(
|
72 |
+
self,
|
73 |
+
num_inference_steps: int,
|
74 |
+
temperature: Union[int, Tuple[int, int], List[int]] = (2, 0),
|
75 |
+
device: Union[str, torch.device] = None,
|
76 |
+
):
|
77 |
+
self.timesteps = torch.arange(num_inference_steps, device=device).flip(0)
|
78 |
+
|
79 |
+
if isinstance(temperature, (tuple, list)):
|
80 |
+
self.temperatures = torch.linspace(temperature[0], temperature[1], num_inference_steps, device=device)
|
81 |
+
else:
|
82 |
+
self.temperatures = torch.linspace(temperature, 0.01, num_inference_steps, device=device)
|
83 |
+
|
84 |
+
|
85 |
+
### from https://huggingface.co/transformers/v3.2.0/_modules/transformers/generation_utils.html
|
86 |
+
def top_k_top_p_filtering(
|
87 |
+
self,
|
88 |
+
logits,
|
89 |
+
top_k: int = 0,
|
90 |
+
top_p: float = 1.0,
|
91 |
+
filter_value: float = -float("Inf"),
|
92 |
+
min_tokens_to_keep: int = 1,
|
93 |
+
):
|
94 |
+
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
95 |
+
Args:
|
96 |
+
logits: logits distribution shape (batch size, vocabulary size)
|
97 |
+
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
98 |
+
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
99 |
+
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
100 |
+
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
101 |
+
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
102 |
+
"""
|
103 |
+
if top_k > 0:
|
104 |
+
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1))
|
105 |
+
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
106 |
+
logits[indices_to_remove] = filter_value
|
107 |
+
|
108 |
+
if top_p < 1.0:
|
109 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
110 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
111 |
+
|
112 |
+
|
113 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
114 |
+
if min_tokens_to_keep > 1:
|
115 |
+
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
116 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
117 |
+
sorted_indices_to_remove[..., 0] = 0
|
118 |
+
|
119 |
+
indices_to_remove = torch.zeros_like(logits, dtype=torch.bool).scatter_(-1, sorted_indices, sorted_indices_to_remove)
|
120 |
+
logits[indices_to_remove] = filter_value
|
121 |
+
|
122 |
+
return logits
|
123 |
+
|
124 |
+
|
125 |
+
def step(
|
126 |
+
self,
|
127 |
+
model_output: torch.Tensor,
|
128 |
+
timestep: torch.long,
|
129 |
+
sample: torch.LongTensor,
|
130 |
+
starting_mask_ratio: int = 1,
|
131 |
+
generator: Optional[torch.Generator] = None,
|
132 |
+
return_dict: bool = True,
|
133 |
+
using_topk_topp: Optional[bool] = False,
|
134 |
+
sampling_temperature: Optional[float] = 1.0,
|
135 |
+
) -> Union[SchedulerOutput, Tuple]:
|
136 |
+
two_dim_input = sample.ndim == 3 and model_output.ndim == 4
|
137 |
+
|
138 |
+
if two_dim_input:
|
139 |
+
batch_size, codebook_size, height, width = model_output.shape
|
140 |
+
sample = sample.reshape(batch_size, height * width)
|
141 |
+
model_output = model_output.reshape(batch_size, codebook_size, height * width).permute(0, 2, 1)
|
142 |
+
|
143 |
+
unknown_map = sample == self.config.mask_token_id
|
144 |
+
|
145 |
+
if using_topk_topp:
|
146 |
+
model_output = model_output / max(sampling_temperature, 1e-5)
|
147 |
+
|
148 |
+
if using_topk_topp:
|
149 |
+
top_k=8192
|
150 |
+
top_p=0.2
|
151 |
+
if top_k > 0 or top_p < 1.0:
|
152 |
+
model_output = self.top_k_top_p_filtering(model_output, top_k=top_k, top_p=top_p)
|
153 |
+
|
154 |
+
probs = model_output.softmax(dim=-1)
|
155 |
+
|
156 |
+
device = probs.device
|
157 |
+
probs_ = probs.to(generator.device) if generator is not None else probs # handles when generator is on CPU
|
158 |
+
if probs_.device.type == "cpu" and probs_.dtype != torch.float32:
|
159 |
+
probs_ = probs_.float() # multinomial is not implemented for cpu half precision
|
160 |
+
probs_ = probs_.reshape(-1, probs.size(-1))
|
161 |
+
pred_original_sample = torch.multinomial(probs_, 1, generator=generator).to(device=device)
|
162 |
+
pred_original_sample = pred_original_sample[:, 0].view(*probs.shape[:-1])
|
163 |
+
pred_original_sample = torch.where(unknown_map, pred_original_sample, sample)
|
164 |
+
|
165 |
+
if timestep == 0:
|
166 |
+
prev_sample = pred_original_sample
|
167 |
+
else:
|
168 |
+
seq_len = sample.shape[1]
|
169 |
+
step_idx = (self.timesteps == timestep).nonzero()
|
170 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
171 |
+
|
172 |
+
if self.config.masking_schedule == "cosine":
|
173 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
174 |
+
elif self.config.masking_schedule == "linear":
|
175 |
+
mask_ratio = 1 - ratio
|
176 |
+
else:
|
177 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
178 |
+
|
179 |
+
mask_ratio = starting_mask_ratio * mask_ratio
|
180 |
+
|
181 |
+
mask_len = (seq_len * mask_ratio).floor()
|
182 |
+
# do not mask more than amount previously masked
|
183 |
+
mask_len = torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
|
184 |
+
# mask at least one
|
185 |
+
mask_len = torch.max(torch.tensor([1], device=model_output.device), mask_len)
|
186 |
+
|
187 |
+
selected_probs = torch.gather(probs, -1, pred_original_sample[:, :, None])[:, :, 0]
|
188 |
+
# Ignores the tokens given in the input by overwriting their confidence.
|
189 |
+
selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
|
190 |
+
|
191 |
+
masking = mask_by_random_topk(mask_len, selected_probs, self.temperatures[step_idx], generator)
|
192 |
+
|
193 |
+
# Masks tokens with lower confidence.
|
194 |
+
prev_sample = torch.where(masking, self.config.mask_token_id, pred_original_sample)
|
195 |
+
|
196 |
+
if two_dim_input:
|
197 |
+
prev_sample = prev_sample.reshape(batch_size, height, width)
|
198 |
+
pred_original_sample = pred_original_sample.reshape(batch_size, height, width)
|
199 |
+
|
200 |
+
if not return_dict:
|
201 |
+
return (prev_sample, pred_original_sample)
|
202 |
+
|
203 |
+
return SchedulerOutput(prev_sample, pred_original_sample)
|
204 |
+
|
205 |
+
def add_noise(self, sample, timesteps, generator=None):
|
206 |
+
step_idx = (self.timesteps == timesteps).nonzero()
|
207 |
+
ratio = (step_idx + 1) / len(self.timesteps)
|
208 |
+
|
209 |
+
if self.config.masking_schedule == "cosine":
|
210 |
+
mask_ratio = torch.cos(ratio * math.pi / 2)
|
211 |
+
elif self.config.masking_schedule == "linear":
|
212 |
+
mask_ratio = 1 - ratio
|
213 |
+
else:
|
214 |
+
raise ValueError(f"unknown masking schedule {self.config.masking_schedule}")
|
215 |
+
|
216 |
+
mask_indices = (
|
217 |
+
torch.rand(
|
218 |
+
sample.shape, device=generator.device if generator is not None else sample.device, generator=generator
|
219 |
+
).to(sample.device)
|
220 |
+
< mask_ratio
|
221 |
+
)
|
222 |
+
|
223 |
+
masked_sample = sample.clone()
|
224 |
+
|
225 |
+
masked_sample[mask_indices] = self.config.mask_token_id
|
226 |
+
|
227 |
+
return masked_sample
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Scheduler",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"mask_token_id": 8255,
|
5 |
+
"masking_schedule": "cosine"
|
6 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CLIPTextModelWithProjection"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"max_position_embeddings": 77,
|
16 |
+
"model_type": "clip_text_model",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"projection_dim": 1024,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"vocab_size": 49408
|
24 |
+
}
|
text_encoder/model.fp16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42a6a63bcfcb0d7cc9e2a687134ceb7cb83d0346285636ec8547e7ffa2bcd224
|
3 |
+
size 708111984
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f32c52903fc74d29d0ea3f0ceea8080eec7ad4b2913e16555a4e546df0f37c7f
|
3 |
+
size 1416177568
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
transformer/config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "Transformer2DModel",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"attention_head_dim": 128,
|
5 |
+
"axes_dims_rope": [
|
6 |
+
16,
|
7 |
+
56,
|
8 |
+
56
|
9 |
+
],
|
10 |
+
"codebook_size": 8192,
|
11 |
+
"downsample": true,
|
12 |
+
"guidance_embeds": false,
|
13 |
+
"in_channels": 64,
|
14 |
+
"joint_attention_dim": 1024,
|
15 |
+
"num_attention_heads": 8,
|
16 |
+
"num_layers": 14,
|
17 |
+
"num_single_layers": 28,
|
18 |
+
"patch_size": 1,
|
19 |
+
"pooled_projection_dim": 1024,
|
20 |
+
"upsample": true,
|
21 |
+
"vocab_size": 8256
|
22 |
+
}
|
transformer/diffusion_pytorch_model.fp16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a1f55cdc9d2f78d50840e1f52dbd407e86e12c9d209f59c79629900b23ce70e1
|
3 |
+
size 2013993248
|
transformer/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a44b1775411bea393b930ad6524d536ef316910e6a898c9400394e21c7fe632f
|
3 |
+
size 4027886416
|
transformer/transformer.py
ADDED
@@ -0,0 +1,1215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team, The InstantX Team and The MeissonFlow Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
25 |
+
from diffusers.models.attention import FeedForward, BasicTransformerBlock, SkipFFTransformerBlock
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
Attention,
|
28 |
+
AttentionProcessor,
|
29 |
+
FluxAttnProcessor2_0,
|
30 |
+
# FusedFluxAttnProcessor2_0,
|
31 |
+
)
|
32 |
+
from diffusers.models.modeling_utils import ModelMixin
|
33 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, GlobalResponseNorm, RMSNorm
|
34 |
+
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
35 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
36 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings,TimestepEmbedding, get_timestep_embedding #,FluxPosEmbed
|
37 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
38 |
+
from diffusers.models.resnet import Downsample2D, Upsample2D
|
39 |
+
|
40 |
+
from typing import List
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def get_3d_rotary_pos_embed(
|
47 |
+
embed_dim, crops_coords, grid_size, temporal_size, theta: int = 10000, use_real: bool = True
|
48 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
49 |
+
"""
|
50 |
+
RoPE for video tokens with 3D structure.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
embed_dim: (`int`):
|
54 |
+
The embedding dimension size, corresponding to hidden_size_head.
|
55 |
+
crops_coords (`Tuple[int]`):
|
56 |
+
The top-left and bottom-right coordinates of the crop.
|
57 |
+
grid_size (`Tuple[int]`):
|
58 |
+
The grid size of the spatial positional embedding (height, width).
|
59 |
+
temporal_size (`int`):
|
60 |
+
The size of the temporal dimension.
|
61 |
+
theta (`float`):
|
62 |
+
Scaling factor for frequency computation.
|
63 |
+
use_real (`bool`):
|
64 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
65 |
+
|
66 |
+
Returns:
|
67 |
+
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`.
|
68 |
+
"""
|
69 |
+
start, stop = crops_coords
|
70 |
+
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
|
71 |
+
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
|
72 |
+
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32)
|
73 |
+
|
74 |
+
# Compute dimensions for each axis
|
75 |
+
dim_t = embed_dim // 4
|
76 |
+
dim_h = embed_dim // 8 * 3
|
77 |
+
dim_w = embed_dim // 8 * 3
|
78 |
+
|
79 |
+
# Temporal frequencies
|
80 |
+
freqs_t = 1.0 / (theta ** (torch.arange(0, dim_t, 2).float() / dim_t))
|
81 |
+
grid_t = torch.from_numpy(grid_t).float()
|
82 |
+
freqs_t = torch.einsum("n , f -> n f", grid_t, freqs_t)
|
83 |
+
freqs_t = freqs_t.repeat_interleave(2, dim=-1)
|
84 |
+
|
85 |
+
# Spatial frequencies for height and width
|
86 |
+
freqs_h = 1.0 / (theta ** (torch.arange(0, dim_h, 2).float() / dim_h))
|
87 |
+
freqs_w = 1.0 / (theta ** (torch.arange(0, dim_w, 2).float() / dim_w))
|
88 |
+
grid_h = torch.from_numpy(grid_h).float()
|
89 |
+
grid_w = torch.from_numpy(grid_w).float()
|
90 |
+
freqs_h = torch.einsum("n , f -> n f", grid_h, freqs_h)
|
91 |
+
freqs_w = torch.einsum("n , f -> n f", grid_w, freqs_w)
|
92 |
+
freqs_h = freqs_h.repeat_interleave(2, dim=-1)
|
93 |
+
freqs_w = freqs_w.repeat_interleave(2, dim=-1)
|
94 |
+
|
95 |
+
# Broadcast and concatenate tensors along specified dimension
|
96 |
+
def broadcast(tensors, dim=-1):
|
97 |
+
num_tensors = len(tensors)
|
98 |
+
shape_lens = {len(t.shape) for t in tensors}
|
99 |
+
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions"
|
100 |
+
shape_len = list(shape_lens)[0]
|
101 |
+
dim = (dim + shape_len) if dim < 0 else dim
|
102 |
+
dims = list(zip(*(list(t.shape) for t in tensors)))
|
103 |
+
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
|
104 |
+
assert all(
|
105 |
+
[*(len(set(t[1])) <= 2 for t in expandable_dims)]
|
106 |
+
), "invalid dimensions for broadcastable concatenation"
|
107 |
+
max_dims = [(t[0], max(t[1])) for t in expandable_dims]
|
108 |
+
expanded_dims = [(t[0], (t[1],) * num_tensors) for t in max_dims]
|
109 |
+
expanded_dims.insert(dim, (dim, dims[dim]))
|
110 |
+
expandable_shapes = list(zip(*(t[1] for t in expanded_dims)))
|
111 |
+
tensors = [t[0].expand(*t[1]) for t in zip(tensors, expandable_shapes)]
|
112 |
+
return torch.cat(tensors, dim=dim)
|
113 |
+
|
114 |
+
freqs = broadcast((freqs_t[:, None, None, :], freqs_h[None, :, None, :], freqs_w[None, None, :, :]), dim=-1)
|
115 |
+
|
116 |
+
t, h, w, d = freqs.shape
|
117 |
+
freqs = freqs.view(t * h * w, d)
|
118 |
+
|
119 |
+
# Generate sine and cosine components
|
120 |
+
sin = freqs.sin()
|
121 |
+
cos = freqs.cos()
|
122 |
+
|
123 |
+
if use_real:
|
124 |
+
return cos, sin
|
125 |
+
else:
|
126 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
127 |
+
return freqs_cis
|
128 |
+
|
129 |
+
|
130 |
+
def get_2d_rotary_pos_embed(embed_dim, crops_coords, grid_size, use_real=True):
|
131 |
+
"""
|
132 |
+
RoPE for image tokens with 2d structure.
|
133 |
+
|
134 |
+
Args:
|
135 |
+
embed_dim: (`int`):
|
136 |
+
The embedding dimension size
|
137 |
+
crops_coords (`Tuple[int]`)
|
138 |
+
The top-left and bottom-right coordinates of the crop.
|
139 |
+
grid_size (`Tuple[int]`):
|
140 |
+
The grid size of the positional embedding.
|
141 |
+
use_real (`bool`):
|
142 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
`torch.Tensor`: positional embedding with shape `( grid_size * grid_size, embed_dim/2)`.
|
146 |
+
"""
|
147 |
+
start, stop = crops_coords
|
148 |
+
grid_h = np.linspace(start[0], stop[0], grid_size[0], endpoint=False, dtype=np.float32)
|
149 |
+
grid_w = np.linspace(start[1], stop[1], grid_size[1], endpoint=False, dtype=np.float32)
|
150 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
151 |
+
grid = np.stack(grid, axis=0) # [2, W, H]
|
152 |
+
|
153 |
+
grid = grid.reshape([2, 1, *grid.shape[1:]])
|
154 |
+
pos_embed = get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=use_real)
|
155 |
+
return pos_embed
|
156 |
+
|
157 |
+
|
158 |
+
def get_2d_rotary_pos_embed_from_grid(embed_dim, grid, use_real=False):
|
159 |
+
assert embed_dim % 4 == 0
|
160 |
+
|
161 |
+
# use half of dimensions to encode grid_h
|
162 |
+
emb_h = get_1d_rotary_pos_embed(
|
163 |
+
embed_dim // 2, grid[0].reshape(-1), use_real=use_real
|
164 |
+
) # (H*W, D/2) if use_real else (H*W, D/4)
|
165 |
+
emb_w = get_1d_rotary_pos_embed(
|
166 |
+
embed_dim // 2, grid[1].reshape(-1), use_real=use_real
|
167 |
+
) # (H*W, D/2) if use_real else (H*W, D/4)
|
168 |
+
|
169 |
+
if use_real:
|
170 |
+
cos = torch.cat([emb_h[0], emb_w[0]], dim=1) # (H*W, D)
|
171 |
+
sin = torch.cat([emb_h[1], emb_w[1]], dim=1) # (H*W, D)
|
172 |
+
return cos, sin
|
173 |
+
else:
|
174 |
+
emb = torch.cat([emb_h, emb_w], dim=1) # (H*W, D/2)
|
175 |
+
return emb
|
176 |
+
|
177 |
+
|
178 |
+
def get_2d_rotary_pos_embed_lumina(embed_dim, len_h, len_w, linear_factor=1.0, ntk_factor=1.0):
|
179 |
+
assert embed_dim % 4 == 0
|
180 |
+
|
181 |
+
emb_h = get_1d_rotary_pos_embed(
|
182 |
+
embed_dim // 2, len_h, linear_factor=linear_factor, ntk_factor=ntk_factor
|
183 |
+
) # (H, D/4)
|
184 |
+
emb_w = get_1d_rotary_pos_embed(
|
185 |
+
embed_dim // 2, len_w, linear_factor=linear_factor, ntk_factor=ntk_factor
|
186 |
+
) # (W, D/4)
|
187 |
+
emb_h = emb_h.view(len_h, 1, embed_dim // 4, 1).repeat(1, len_w, 1, 1) # (H, W, D/4, 1)
|
188 |
+
emb_w = emb_w.view(1, len_w, embed_dim // 4, 1).repeat(len_h, 1, 1, 1) # (H, W, D/4, 1)
|
189 |
+
|
190 |
+
emb = torch.cat([emb_h, emb_w], dim=-1).flatten(2) # (H, W, D/2)
|
191 |
+
return emb
|
192 |
+
|
193 |
+
|
194 |
+
def get_1d_rotary_pos_embed(
|
195 |
+
dim: int,
|
196 |
+
pos: Union[np.ndarray, int],
|
197 |
+
theta: float = 10000.0,
|
198 |
+
use_real=False,
|
199 |
+
linear_factor=1.0,
|
200 |
+
ntk_factor=1.0,
|
201 |
+
repeat_interleave_real=True,
|
202 |
+
freqs_dtype=torch.float32, # torch.float32 (hunyuan, stable audio), torch.float64 (flux)
|
203 |
+
):
|
204 |
+
"""
|
205 |
+
Precompute the frequency tensor for complex exponentials (cis) with given dimensions.
|
206 |
+
|
207 |
+
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' and the end
|
208 |
+
index 'end'. The 'theta' parameter scales the frequencies. The returned tensor contains complex values in complex64
|
209 |
+
data type.
|
210 |
+
|
211 |
+
Args:
|
212 |
+
dim (`int`): Dimension of the frequency tensor.
|
213 |
+
pos (`np.ndarray` or `int`): Position indices for the frequency tensor. [S] or scalar
|
214 |
+
theta (`float`, *optional*, defaults to 10000.0):
|
215 |
+
Scaling factor for frequency computation. Defaults to 10000.0.
|
216 |
+
use_real (`bool`, *optional*):
|
217 |
+
If True, return real part and imaginary part separately. Otherwise, return complex numbers.
|
218 |
+
linear_factor (`float`, *optional*, defaults to 1.0):
|
219 |
+
Scaling factor for the context extrapolation. Defaults to 1.0.
|
220 |
+
ntk_factor (`float`, *optional*, defaults to 1.0):
|
221 |
+
Scaling factor for the NTK-Aware RoPE. Defaults to 1.0.
|
222 |
+
repeat_interleave_real (`bool`, *optional*, defaults to `True`):
|
223 |
+
If `True` and `use_real`, real part and imaginary part are each interleaved with themselves to reach `dim`.
|
224 |
+
Otherwise, they are concateanted with themselves.
|
225 |
+
freqs_dtype (`torch.float32` or `torch.float64`, *optional*, defaults to `torch.float32`):
|
226 |
+
the dtype of the frequency tensor.
|
227 |
+
Returns:
|
228 |
+
`torch.Tensor`: Precomputed frequency tensor with complex exponentials. [S, D/2]
|
229 |
+
"""
|
230 |
+
assert dim % 2 == 0
|
231 |
+
|
232 |
+
if isinstance(pos, int):
|
233 |
+
pos = np.arange(pos)
|
234 |
+
theta = theta * ntk_factor
|
235 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=freqs_dtype)[: (dim // 2)] / dim)) / linear_factor # [D/2]
|
236 |
+
t = torch.from_numpy(pos).to(freqs.device) # type: ignore # [S]
|
237 |
+
freqs = torch.outer(t, freqs) # type: ignore # [S, D/2]
|
238 |
+
if use_real and repeat_interleave_real:
|
239 |
+
freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D]
|
240 |
+
freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D]
|
241 |
+
return freqs_cos, freqs_sin
|
242 |
+
elif use_real:
|
243 |
+
freqs_cos = torch.cat([freqs.cos(), freqs.cos()], dim=-1).float() # [S, D]
|
244 |
+
freqs_sin = torch.cat([freqs.sin(), freqs.sin()], dim=-1).float() # [S, D]
|
245 |
+
return freqs_cos, freqs_sin
|
246 |
+
else:
|
247 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs).float() # complex64 # [S, D/2]
|
248 |
+
return freqs_cis
|
249 |
+
|
250 |
+
|
251 |
+
class FluxPosEmbed(nn.Module):
|
252 |
+
# modified from https://github.com/black-forest-labs/flux/blob/c00d7c60b085fce8058b9df845e036090873f2ce/src/flux/modules/layers.py#L11
|
253 |
+
def __init__(self, theta: int, axes_dim: List[int]):
|
254 |
+
super().__init__()
|
255 |
+
self.theta = theta
|
256 |
+
self.axes_dim = axes_dim
|
257 |
+
|
258 |
+
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
259 |
+
n_axes = ids.shape[-1]
|
260 |
+
cos_out = []
|
261 |
+
sin_out = []
|
262 |
+
pos = ids.squeeze().float().cpu().numpy()
|
263 |
+
is_mps = ids.device.type == "mps"
|
264 |
+
freqs_dtype = torch.float32 if is_mps else torch.float64
|
265 |
+
for i in range(n_axes):
|
266 |
+
cos, sin = get_1d_rotary_pos_embed(
|
267 |
+
self.axes_dim[i], pos[:, i], repeat_interleave_real=True, use_real=True, freqs_dtype=freqs_dtype
|
268 |
+
)
|
269 |
+
cos_out.append(cos)
|
270 |
+
sin_out.append(sin)
|
271 |
+
freqs_cos = torch.cat(cos_out, dim=-1).to(ids.device)
|
272 |
+
freqs_sin = torch.cat(sin_out, dim=-1).to(ids.device)
|
273 |
+
return freqs_cos, freqs_sin
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
class FusedFluxAttnProcessor2_0:
|
278 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
279 |
+
|
280 |
+
def __init__(self):
|
281 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
282 |
+
raise ImportError(
|
283 |
+
"FusedFluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
284 |
+
)
|
285 |
+
|
286 |
+
def __call__(
|
287 |
+
self,
|
288 |
+
attn: Attention,
|
289 |
+
hidden_states: torch.FloatTensor,
|
290 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
291 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
292 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
293 |
+
) -> torch.FloatTensor:
|
294 |
+
batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
295 |
+
|
296 |
+
# `sample` projections.
|
297 |
+
qkv = attn.to_qkv(hidden_states)
|
298 |
+
split_size = qkv.shape[-1] // 3
|
299 |
+
query, key, value = torch.split(qkv, split_size, dim=-1)
|
300 |
+
|
301 |
+
inner_dim = key.shape[-1]
|
302 |
+
head_dim = inner_dim // attn.heads
|
303 |
+
|
304 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
305 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
306 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
307 |
+
|
308 |
+
if attn.norm_q is not None:
|
309 |
+
query = attn.norm_q(query)
|
310 |
+
if attn.norm_k is not None:
|
311 |
+
key = attn.norm_k(key)
|
312 |
+
|
313 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
314 |
+
# `context` projections.
|
315 |
+
if encoder_hidden_states is not None:
|
316 |
+
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
317 |
+
split_size = encoder_qkv.shape[-1] // 3
|
318 |
+
(
|
319 |
+
encoder_hidden_states_query_proj,
|
320 |
+
encoder_hidden_states_key_proj,
|
321 |
+
encoder_hidden_states_value_proj,
|
322 |
+
) = torch.split(encoder_qkv, split_size, dim=-1)
|
323 |
+
|
324 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
325 |
+
batch_size, -1, attn.heads, head_dim
|
326 |
+
).transpose(1, 2)
|
327 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
328 |
+
batch_size, -1, attn.heads, head_dim
|
329 |
+
).transpose(1, 2)
|
330 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
331 |
+
batch_size, -1, attn.heads, head_dim
|
332 |
+
).transpose(1, 2)
|
333 |
+
|
334 |
+
if attn.norm_added_q is not None:
|
335 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
336 |
+
if attn.norm_added_k is not None:
|
337 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
338 |
+
|
339 |
+
# attention
|
340 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
341 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
342 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
343 |
+
|
344 |
+
if image_rotary_emb is not None:
|
345 |
+
from .embeddings import apply_rotary_emb
|
346 |
+
|
347 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
348 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
349 |
+
|
350 |
+
hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False)
|
351 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
352 |
+
hidden_states = hidden_states.to(query.dtype)
|
353 |
+
|
354 |
+
if encoder_hidden_states is not None:
|
355 |
+
encoder_hidden_states, hidden_states = (
|
356 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
357 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
358 |
+
)
|
359 |
+
|
360 |
+
# linear proj
|
361 |
+
hidden_states = attn.to_out[0](hidden_states)
|
362 |
+
# dropout
|
363 |
+
hidden_states = attn.to_out[1](hidden_states)
|
364 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
365 |
+
|
366 |
+
return hidden_states, encoder_hidden_states
|
367 |
+
else:
|
368 |
+
return hidden_states
|
369 |
+
|
370 |
+
|
371 |
+
|
372 |
+
@maybe_allow_in_graph
|
373 |
+
class SingleTransformerBlock(nn.Module):
|
374 |
+
r"""
|
375 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
376 |
+
|
377 |
+
Reference: https://arxiv.org/abs/2403.03206
|
378 |
+
|
379 |
+
Parameters:
|
380 |
+
dim (`int`): The number of channels in the input and output.
|
381 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
382 |
+
attention_head_dim (`int`): The number of channels in each head.
|
383 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
384 |
+
processing of `context` conditions.
|
385 |
+
"""
|
386 |
+
|
387 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
388 |
+
super().__init__()
|
389 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
390 |
+
|
391 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
392 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
393 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
394 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
395 |
+
|
396 |
+
processor = FluxAttnProcessor2_0()
|
397 |
+
self.attn = Attention(
|
398 |
+
query_dim=dim,
|
399 |
+
cross_attention_dim=None,
|
400 |
+
dim_head=attention_head_dim,
|
401 |
+
heads=num_attention_heads,
|
402 |
+
out_dim=dim,
|
403 |
+
bias=True,
|
404 |
+
processor=processor,
|
405 |
+
qk_norm="rms_norm",
|
406 |
+
eps=1e-6,
|
407 |
+
pre_only=True,
|
408 |
+
)
|
409 |
+
|
410 |
+
def forward(
|
411 |
+
self,
|
412 |
+
hidden_states: torch.FloatTensor,
|
413 |
+
temb: torch.FloatTensor,
|
414 |
+
image_rotary_emb=None,
|
415 |
+
):
|
416 |
+
residual = hidden_states
|
417 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
418 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
419 |
+
|
420 |
+
attn_output = self.attn(
|
421 |
+
hidden_states=norm_hidden_states,
|
422 |
+
image_rotary_emb=image_rotary_emb,
|
423 |
+
)
|
424 |
+
|
425 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
426 |
+
gate = gate.unsqueeze(1)
|
427 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
428 |
+
hidden_states = residual + hidden_states
|
429 |
+
if hidden_states.dtype == torch.float16:
|
430 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
431 |
+
|
432 |
+
return hidden_states
|
433 |
+
|
434 |
+
@maybe_allow_in_graph
|
435 |
+
class TransformerBlock(nn.Module):
|
436 |
+
r"""
|
437 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
438 |
+
|
439 |
+
Reference: https://arxiv.org/abs/2403.03206
|
440 |
+
|
441 |
+
Parameters:
|
442 |
+
dim (`int`): The number of channels in the input and output.
|
443 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
444 |
+
attention_head_dim (`int`): The number of channels in each head.
|
445 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
446 |
+
processing of `context` conditions.
|
447 |
+
"""
|
448 |
+
|
449 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
|
450 |
+
super().__init__()
|
451 |
+
|
452 |
+
self.norm1 = AdaLayerNormZero(dim)
|
453 |
+
|
454 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
455 |
+
|
456 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
457 |
+
processor = FluxAttnProcessor2_0()
|
458 |
+
else:
|
459 |
+
raise ValueError(
|
460 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
461 |
+
)
|
462 |
+
self.attn = Attention(
|
463 |
+
query_dim=dim,
|
464 |
+
cross_attention_dim=None,
|
465 |
+
added_kv_proj_dim=dim,
|
466 |
+
dim_head=attention_head_dim,
|
467 |
+
heads=num_attention_heads,
|
468 |
+
out_dim=dim,
|
469 |
+
context_pre_only=False,
|
470 |
+
bias=True,
|
471 |
+
processor=processor,
|
472 |
+
qk_norm=qk_norm,
|
473 |
+
eps=eps,
|
474 |
+
)
|
475 |
+
|
476 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
477 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
478 |
+
# self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
|
479 |
+
|
480 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
481 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
482 |
+
# self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="swiglu")
|
483 |
+
|
484 |
+
# let chunk size default to None
|
485 |
+
self._chunk_size = None
|
486 |
+
self._chunk_dim = 0
|
487 |
+
|
488 |
+
def forward(
|
489 |
+
self,
|
490 |
+
hidden_states: torch.FloatTensor,
|
491 |
+
encoder_hidden_states: torch.FloatTensor,
|
492 |
+
temb: torch.FloatTensor,
|
493 |
+
image_rotary_emb=None,
|
494 |
+
):
|
495 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
496 |
+
|
497 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
498 |
+
encoder_hidden_states, emb=temb
|
499 |
+
)
|
500 |
+
# Attention.
|
501 |
+
attn_output, context_attn_output = self.attn(
|
502 |
+
hidden_states=norm_hidden_states,
|
503 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
504 |
+
image_rotary_emb=image_rotary_emb,
|
505 |
+
)
|
506 |
+
|
507 |
+
# Process attention outputs for the `hidden_states`.
|
508 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
509 |
+
hidden_states = hidden_states + attn_output
|
510 |
+
|
511 |
+
norm_hidden_states = self.norm2(hidden_states)
|
512 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
513 |
+
|
514 |
+
ff_output = self.ff(norm_hidden_states)
|
515 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
516 |
+
|
517 |
+
hidden_states = hidden_states + ff_output
|
518 |
+
|
519 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
520 |
+
|
521 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
522 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
523 |
+
|
524 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
525 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
526 |
+
|
527 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
528 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
529 |
+
if encoder_hidden_states.dtype == torch.float16:
|
530 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
531 |
+
|
532 |
+
return encoder_hidden_states, hidden_states
|
533 |
+
|
534 |
+
|
535 |
+
class UVit2DConvEmbed(nn.Module):
|
536 |
+
def __init__(self, in_channels, block_out_channels, vocab_size, elementwise_affine, eps, bias):
|
537 |
+
super().__init__()
|
538 |
+
self.embeddings = nn.Embedding(vocab_size, in_channels)
|
539 |
+
self.layer_norm = RMSNorm(in_channels, eps, elementwise_affine)
|
540 |
+
self.conv = nn.Conv2d(in_channels, block_out_channels, kernel_size=1, bias=bias)
|
541 |
+
|
542 |
+
def forward(self, input_ids):
|
543 |
+
embeddings = self.embeddings(input_ids)
|
544 |
+
embeddings = self.layer_norm(embeddings)
|
545 |
+
embeddings = embeddings.permute(0, 3, 1, 2)
|
546 |
+
embeddings = self.conv(embeddings)
|
547 |
+
return embeddings
|
548 |
+
|
549 |
+
class ConvMlmLayer(nn.Module):
|
550 |
+
def __init__(
|
551 |
+
self,
|
552 |
+
block_out_channels: int,
|
553 |
+
in_channels: int,
|
554 |
+
use_bias: bool,
|
555 |
+
ln_elementwise_affine: bool,
|
556 |
+
layer_norm_eps: float,
|
557 |
+
codebook_size: int,
|
558 |
+
):
|
559 |
+
super().__init__()
|
560 |
+
self.conv1 = nn.Conv2d(block_out_channels, in_channels, kernel_size=1, bias=use_bias)
|
561 |
+
self.layer_norm = RMSNorm(in_channels, layer_norm_eps, ln_elementwise_affine)
|
562 |
+
self.conv2 = nn.Conv2d(in_channels, codebook_size, kernel_size=1, bias=use_bias)
|
563 |
+
|
564 |
+
def forward(self, hidden_states):
|
565 |
+
hidden_states = self.conv1(hidden_states)
|
566 |
+
hidden_states = self.layer_norm(hidden_states.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
|
567 |
+
logits = self.conv2(hidden_states)
|
568 |
+
return logits
|
569 |
+
|
570 |
+
class SwiGLU(nn.Module):
|
571 |
+
r"""
|
572 |
+
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
|
573 |
+
but uses SiLU / Swish instead of GeLU.
|
574 |
+
|
575 |
+
Parameters:
|
576 |
+
dim_in (`int`): The number of channels in the input.
|
577 |
+
dim_out (`int`): The number of channels in the output.
|
578 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
579 |
+
"""
|
580 |
+
|
581 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
582 |
+
super().__init__()
|
583 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
584 |
+
self.activation = nn.SiLU()
|
585 |
+
|
586 |
+
def forward(self, hidden_states):
|
587 |
+
hidden_states = self.proj(hidden_states)
|
588 |
+
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
589 |
+
return hidden_states * self.activation(gate)
|
590 |
+
|
591 |
+
class ConvNextBlock(nn.Module):
|
592 |
+
def __init__(
|
593 |
+
self, channels, layer_norm_eps, ln_elementwise_affine, use_bias, hidden_dropout, hidden_size, res_ffn_factor=4
|
594 |
+
):
|
595 |
+
super().__init__()
|
596 |
+
self.depthwise = nn.Conv2d(
|
597 |
+
channels,
|
598 |
+
channels,
|
599 |
+
kernel_size=3,
|
600 |
+
padding=1,
|
601 |
+
groups=channels,
|
602 |
+
bias=use_bias,
|
603 |
+
)
|
604 |
+
self.norm = RMSNorm(channels, layer_norm_eps, ln_elementwise_affine)
|
605 |
+
self.channelwise_linear_1 = nn.Linear(channels, int(channels * res_ffn_factor), bias=use_bias)
|
606 |
+
self.channelwise_act = nn.GELU()
|
607 |
+
self.channelwise_norm = GlobalResponseNorm(int(channels * res_ffn_factor))
|
608 |
+
self.channelwise_linear_2 = nn.Linear(int(channels * res_ffn_factor), channels, bias=use_bias)
|
609 |
+
self.channelwise_dropout = nn.Dropout(hidden_dropout)
|
610 |
+
self.cond_embeds_mapper = nn.Linear(hidden_size, channels * 2, use_bias)
|
611 |
+
|
612 |
+
def forward(self, x, cond_embeds):
|
613 |
+
x_res = x
|
614 |
+
|
615 |
+
x = self.depthwise(x)
|
616 |
+
|
617 |
+
x = x.permute(0, 2, 3, 1)
|
618 |
+
x = self.norm(x)
|
619 |
+
|
620 |
+
x = self.channelwise_linear_1(x)
|
621 |
+
x = self.channelwise_act(x)
|
622 |
+
x = self.channelwise_norm(x)
|
623 |
+
x = self.channelwise_linear_2(x)
|
624 |
+
x = self.channelwise_dropout(x)
|
625 |
+
|
626 |
+
x = x.permute(0, 3, 1, 2)
|
627 |
+
|
628 |
+
x = x + x_res
|
629 |
+
|
630 |
+
scale, shift = self.cond_embeds_mapper(F.silu(cond_embeds)).chunk(2, dim=1)
|
631 |
+
x = x * (1 + scale[:, :, None, None]) + shift[:, :, None, None]
|
632 |
+
|
633 |
+
return x
|
634 |
+
|
635 |
+
class Simple_UVitBlock(nn.Module):
|
636 |
+
def __init__(
|
637 |
+
self,
|
638 |
+
channels,
|
639 |
+
ln_elementwise_affine,
|
640 |
+
layer_norm_eps,
|
641 |
+
use_bias,
|
642 |
+
downsample: bool,
|
643 |
+
upsample: bool,
|
644 |
+
):
|
645 |
+
super().__init__()
|
646 |
+
|
647 |
+
if downsample:
|
648 |
+
self.downsample = Downsample2D(
|
649 |
+
channels,
|
650 |
+
use_conv=True,
|
651 |
+
padding=0,
|
652 |
+
name="Conv2d_0",
|
653 |
+
kernel_size=2,
|
654 |
+
norm_type="rms_norm",
|
655 |
+
eps=layer_norm_eps,
|
656 |
+
elementwise_affine=ln_elementwise_affine,
|
657 |
+
bias=use_bias,
|
658 |
+
)
|
659 |
+
else:
|
660 |
+
self.downsample = None
|
661 |
+
|
662 |
+
if upsample:
|
663 |
+
self.upsample = Upsample2D(
|
664 |
+
channels,
|
665 |
+
use_conv_transpose=True,
|
666 |
+
kernel_size=2,
|
667 |
+
padding=0,
|
668 |
+
name="conv",
|
669 |
+
norm_type="rms_norm",
|
670 |
+
eps=layer_norm_eps,
|
671 |
+
elementwise_affine=ln_elementwise_affine,
|
672 |
+
bias=use_bias,
|
673 |
+
interpolate=False,
|
674 |
+
)
|
675 |
+
else:
|
676 |
+
self.upsample = None
|
677 |
+
|
678 |
+
def forward(self, x):
|
679 |
+
# print("before,", x.shape)
|
680 |
+
if self.downsample is not None:
|
681 |
+
# print('downsample')
|
682 |
+
x = self.downsample(x)
|
683 |
+
|
684 |
+
if self.upsample is not None:
|
685 |
+
# print('upsample')
|
686 |
+
x = self.upsample(x)
|
687 |
+
# print("after,", x.shape)
|
688 |
+
return x
|
689 |
+
|
690 |
+
|
691 |
+
class UVitBlock(nn.Module):
|
692 |
+
def __init__(
|
693 |
+
self,
|
694 |
+
channels,
|
695 |
+
num_res_blocks: int,
|
696 |
+
hidden_size,
|
697 |
+
hidden_dropout,
|
698 |
+
ln_elementwise_affine,
|
699 |
+
layer_norm_eps,
|
700 |
+
use_bias,
|
701 |
+
block_num_heads,
|
702 |
+
attention_dropout,
|
703 |
+
downsample: bool,
|
704 |
+
upsample: bool,
|
705 |
+
):
|
706 |
+
super().__init__()
|
707 |
+
|
708 |
+
if downsample:
|
709 |
+
self.downsample = Downsample2D(
|
710 |
+
channels,
|
711 |
+
use_conv=True,
|
712 |
+
padding=0,
|
713 |
+
name="Conv2d_0",
|
714 |
+
kernel_size=2,
|
715 |
+
norm_type="rms_norm",
|
716 |
+
eps=layer_norm_eps,
|
717 |
+
elementwise_affine=ln_elementwise_affine,
|
718 |
+
bias=use_bias,
|
719 |
+
)
|
720 |
+
else:
|
721 |
+
self.downsample = None
|
722 |
+
|
723 |
+
self.res_blocks = nn.ModuleList(
|
724 |
+
[
|
725 |
+
ConvNextBlock(
|
726 |
+
channels,
|
727 |
+
layer_norm_eps,
|
728 |
+
ln_elementwise_affine,
|
729 |
+
use_bias,
|
730 |
+
hidden_dropout,
|
731 |
+
hidden_size,
|
732 |
+
)
|
733 |
+
for i in range(num_res_blocks)
|
734 |
+
]
|
735 |
+
)
|
736 |
+
|
737 |
+
self.attention_blocks = nn.ModuleList(
|
738 |
+
[
|
739 |
+
SkipFFTransformerBlock(
|
740 |
+
channels,
|
741 |
+
block_num_heads,
|
742 |
+
channels // block_num_heads,
|
743 |
+
hidden_size,
|
744 |
+
use_bias,
|
745 |
+
attention_dropout,
|
746 |
+
channels,
|
747 |
+
attention_bias=use_bias,
|
748 |
+
attention_out_bias=use_bias,
|
749 |
+
)
|
750 |
+
for _ in range(num_res_blocks)
|
751 |
+
]
|
752 |
+
)
|
753 |
+
|
754 |
+
if upsample:
|
755 |
+
self.upsample = Upsample2D(
|
756 |
+
channels,
|
757 |
+
use_conv_transpose=True,
|
758 |
+
kernel_size=2,
|
759 |
+
padding=0,
|
760 |
+
name="conv",
|
761 |
+
norm_type="rms_norm",
|
762 |
+
eps=layer_norm_eps,
|
763 |
+
elementwise_affine=ln_elementwise_affine,
|
764 |
+
bias=use_bias,
|
765 |
+
interpolate=False,
|
766 |
+
)
|
767 |
+
else:
|
768 |
+
self.upsample = None
|
769 |
+
|
770 |
+
def forward(self, x, pooled_text_emb, encoder_hidden_states, cross_attention_kwargs):
|
771 |
+
if self.downsample is not None:
|
772 |
+
x = self.downsample(x)
|
773 |
+
|
774 |
+
for res_block, attention_block in zip(self.res_blocks, self.attention_blocks):
|
775 |
+
x = res_block(x, pooled_text_emb)
|
776 |
+
|
777 |
+
batch_size, channels, height, width = x.shape
|
778 |
+
x = x.view(batch_size, channels, height * width).permute(0, 2, 1)
|
779 |
+
x = attention_block(
|
780 |
+
x, encoder_hidden_states=encoder_hidden_states, cross_attention_kwargs=cross_attention_kwargs
|
781 |
+
)
|
782 |
+
x = x.permute(0, 2, 1).view(batch_size, channels, height, width)
|
783 |
+
|
784 |
+
if self.upsample is not None:
|
785 |
+
x = self.upsample(x)
|
786 |
+
|
787 |
+
return x
|
788 |
+
|
789 |
+
class Transformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):
|
790 |
+
"""
|
791 |
+
The Transformer model introduced in Flux.
|
792 |
+
|
793 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
794 |
+
|
795 |
+
Parameters:
|
796 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
797 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
798 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
799 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
800 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
801 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
802 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
803 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
804 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
805 |
+
"""
|
806 |
+
|
807 |
+
_supports_gradient_checkpointing = False #True
|
808 |
+
# Due to NotImplementedError: DDPOptimizer backend: Found a higher order op in the graph. This is not supported. Please turn off DDP optimizer using torch._dynamo.config.optimize_ddp=False. Note that this can cause performance degradation because there will be one bucket for the entire Dynamo graph.
|
809 |
+
# Please refer to this issue - https://github.com/pytorch/pytorch/issues/104674.
|
810 |
+
_no_split_modules = ["TransformerBlock", "SingleTransformerBlock"]
|
811 |
+
|
812 |
+
@register_to_config
|
813 |
+
def __init__(
|
814 |
+
self,
|
815 |
+
patch_size: int = 1,
|
816 |
+
in_channels: int = 64,
|
817 |
+
num_layers: int = 19,
|
818 |
+
num_single_layers: int = 38,
|
819 |
+
attention_head_dim: int = 128,
|
820 |
+
num_attention_heads: int = 24,
|
821 |
+
joint_attention_dim: int = 4096,
|
822 |
+
pooled_projection_dim: int = 768,
|
823 |
+
guidance_embeds: bool = False, # unused in our implementation
|
824 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
825 |
+
vocab_size: int = 8256,
|
826 |
+
codebook_size: int = 8192,
|
827 |
+
downsample: bool = False,
|
828 |
+
upsample: bool = False,
|
829 |
+
):
|
830 |
+
super().__init__()
|
831 |
+
self.out_channels = in_channels
|
832 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
833 |
+
|
834 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
835 |
+
text_time_guidance_cls = (
|
836 |
+
CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
837 |
+
)
|
838 |
+
self.time_text_embed = text_time_guidance_cls(
|
839 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
840 |
+
)
|
841 |
+
|
842 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
|
843 |
+
|
844 |
+
self.transformer_blocks = nn.ModuleList(
|
845 |
+
[
|
846 |
+
TransformerBlock(
|
847 |
+
dim=self.inner_dim,
|
848 |
+
num_attention_heads=self.config.num_attention_heads,
|
849 |
+
attention_head_dim=self.config.attention_head_dim,
|
850 |
+
)
|
851 |
+
for i in range(self.config.num_layers)
|
852 |
+
]
|
853 |
+
)
|
854 |
+
|
855 |
+
self.single_transformer_blocks = nn.ModuleList(
|
856 |
+
[
|
857 |
+
SingleTransformerBlock(
|
858 |
+
dim=self.inner_dim,
|
859 |
+
num_attention_heads=self.config.num_attention_heads,
|
860 |
+
attention_head_dim=self.config.attention_head_dim,
|
861 |
+
)
|
862 |
+
for i in range(self.config.num_single_layers)
|
863 |
+
]
|
864 |
+
)
|
865 |
+
|
866 |
+
|
867 |
+
self.gradient_checkpointing = False
|
868 |
+
|
869 |
+
in_channels_embed = self.inner_dim
|
870 |
+
ln_elementwise_affine = True
|
871 |
+
layer_norm_eps = 1e-06
|
872 |
+
use_bias = False
|
873 |
+
micro_cond_embed_dim = 1280
|
874 |
+
self.embed = UVit2DConvEmbed(
|
875 |
+
in_channels_embed, self.inner_dim, self.config.vocab_size, ln_elementwise_affine, layer_norm_eps, use_bias
|
876 |
+
)
|
877 |
+
self.mlm_layer = ConvMlmLayer(
|
878 |
+
self.inner_dim, in_channels_embed, use_bias, ln_elementwise_affine, layer_norm_eps, self.config.codebook_size
|
879 |
+
)
|
880 |
+
self.cond_embed = TimestepEmbedding(
|
881 |
+
micro_cond_embed_dim + self.config.pooled_projection_dim, self.inner_dim, sample_proj_bias=use_bias
|
882 |
+
)
|
883 |
+
self.encoder_proj_layer_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
884 |
+
self.project_to_hidden_norm = RMSNorm(in_channels_embed, layer_norm_eps, ln_elementwise_affine)
|
885 |
+
self.project_to_hidden = nn.Linear(in_channels_embed, self.inner_dim, bias=use_bias)
|
886 |
+
self.project_from_hidden_norm = RMSNorm(self.inner_dim, layer_norm_eps, ln_elementwise_affine)
|
887 |
+
self.project_from_hidden = nn.Linear(self.inner_dim, in_channels_embed, bias=use_bias)
|
888 |
+
|
889 |
+
self.down_block = Simple_UVitBlock(
|
890 |
+
self.inner_dim,
|
891 |
+
ln_elementwise_affine,
|
892 |
+
layer_norm_eps,
|
893 |
+
use_bias,
|
894 |
+
downsample,
|
895 |
+
False,
|
896 |
+
)
|
897 |
+
self.up_block = Simple_UVitBlock(
|
898 |
+
self.inner_dim, #block_out_channels,
|
899 |
+
ln_elementwise_affine,
|
900 |
+
layer_norm_eps,
|
901 |
+
use_bias,
|
902 |
+
False,
|
903 |
+
upsample=upsample,
|
904 |
+
)
|
905 |
+
|
906 |
+
# self.fuse_qkv_projections()
|
907 |
+
|
908 |
+
@property
|
909 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
910 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
911 |
+
r"""
|
912 |
+
Returns:
|
913 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
914 |
+
indexed by its weight name.
|
915 |
+
"""
|
916 |
+
# set recursively
|
917 |
+
processors = {}
|
918 |
+
|
919 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
920 |
+
if hasattr(module, "get_processor"):
|
921 |
+
processors[f"{name}.processor"] = module.get_processor()
|
922 |
+
|
923 |
+
for sub_name, child in module.named_children():
|
924 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
925 |
+
|
926 |
+
return processors
|
927 |
+
|
928 |
+
for name, module in self.named_children():
|
929 |
+
fn_recursive_add_processors(name, module, processors)
|
930 |
+
|
931 |
+
return processors
|
932 |
+
|
933 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
934 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
935 |
+
r"""
|
936 |
+
Sets the attention processor to use to compute attention.
|
937 |
+
|
938 |
+
Parameters:
|
939 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
940 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
941 |
+
for **all** `Attention` layers.
|
942 |
+
|
943 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
944 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
945 |
+
|
946 |
+
"""
|
947 |
+
count = len(self.attn_processors.keys())
|
948 |
+
|
949 |
+
if isinstance(processor, dict) and len(processor) != count:
|
950 |
+
raise ValueError(
|
951 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
952 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
953 |
+
)
|
954 |
+
|
955 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
956 |
+
if hasattr(module, "set_processor"):
|
957 |
+
if not isinstance(processor, dict):
|
958 |
+
module.set_processor(processor)
|
959 |
+
else:
|
960 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
961 |
+
|
962 |
+
for sub_name, child in module.named_children():
|
963 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
964 |
+
|
965 |
+
for name, module in self.named_children():
|
966 |
+
fn_recursive_attn_processor(name, module, processor)
|
967 |
+
|
968 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
|
969 |
+
def fuse_qkv_projections(self):
|
970 |
+
"""
|
971 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
972 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
973 |
+
|
974 |
+
<Tip warning={true}>
|
975 |
+
|
976 |
+
This API is 🧪 experimental.
|
977 |
+
|
978 |
+
</Tip>
|
979 |
+
"""
|
980 |
+
self.original_attn_processors = None
|
981 |
+
|
982 |
+
for _, attn_processor in self.attn_processors.items():
|
983 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
984 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
985 |
+
|
986 |
+
self.original_attn_processors = self.attn_processors
|
987 |
+
|
988 |
+
for module in self.modules():
|
989 |
+
if isinstance(module, Attention):
|
990 |
+
module.fuse_projections(fuse=True)
|
991 |
+
|
992 |
+
self.set_attn_processor(FusedFluxAttnProcessor2_0())
|
993 |
+
|
994 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
995 |
+
def unfuse_qkv_projections(self):
|
996 |
+
"""Disables the fused QKV projection if enabled.
|
997 |
+
|
998 |
+
<Tip warning={true}>
|
999 |
+
|
1000 |
+
This API is 🧪 experimental.
|
1001 |
+
|
1002 |
+
</Tip>
|
1003 |
+
|
1004 |
+
"""
|
1005 |
+
if self.original_attn_processors is not None:
|
1006 |
+
self.set_attn_processor(self.original_attn_processors)
|
1007 |
+
|
1008 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1009 |
+
if hasattr(module, "gradient_checkpointing"):
|
1010 |
+
module.gradient_checkpointing = value
|
1011 |
+
|
1012 |
+
def forward(
|
1013 |
+
self,
|
1014 |
+
hidden_states: torch.Tensor,
|
1015 |
+
encoder_hidden_states: torch.Tensor = None,
|
1016 |
+
pooled_projections: torch.Tensor = None,
|
1017 |
+
timestep: torch.LongTensor = None,
|
1018 |
+
img_ids: torch.Tensor = None,
|
1019 |
+
txt_ids: torch.Tensor = None,
|
1020 |
+
guidance: torch.Tensor = None,
|
1021 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1022 |
+
controlnet_block_samples= None,
|
1023 |
+
controlnet_single_block_samples=None,
|
1024 |
+
return_dict: bool = True,
|
1025 |
+
micro_conds: torch.Tensor = None,
|
1026 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
1027 |
+
"""
|
1028 |
+
The [`FluxTransformer2DModel`] forward method.
|
1029 |
+
|
1030 |
+
Args:
|
1031 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
1032 |
+
Input `hidden_states`.
|
1033 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
1034 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
1035 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
1036 |
+
from the embeddings of input conditions.
|
1037 |
+
timestep ( `torch.LongTensor`):
|
1038 |
+
Used to indicate denoising step.
|
1039 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
1040 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
1041 |
+
joint_attention_kwargs (`dict`, *optional*):
|
1042 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1043 |
+
`self.processor` in
|
1044 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1045 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1046 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
1047 |
+
tuple.
|
1048 |
+
|
1049 |
+
Returns:
|
1050 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
1051 |
+
`tuple` where the first element is the sample tensor.
|
1052 |
+
"""
|
1053 |
+
micro_cond_encode_dim = 256 # same as self.config.micro_cond_encode_dim = 256 from amused
|
1054 |
+
micro_cond_embeds = get_timestep_embedding(
|
1055 |
+
micro_conds.flatten(), micro_cond_encode_dim, flip_sin_to_cos=True, downscale_freq_shift=0
|
1056 |
+
)
|
1057 |
+
micro_cond_embeds = micro_cond_embeds.reshape((hidden_states.shape[0], -1))
|
1058 |
+
|
1059 |
+
pooled_projections = torch.cat([pooled_projections, micro_cond_embeds], dim=1)
|
1060 |
+
pooled_projections = pooled_projections.to(dtype=self.dtype)
|
1061 |
+
pooled_projections = self.cond_embed(pooled_projections).to(encoder_hidden_states.dtype)
|
1062 |
+
|
1063 |
+
|
1064 |
+
hidden_states = self.embed(hidden_states)
|
1065 |
+
|
1066 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
1067 |
+
encoder_hidden_states = self.encoder_proj_layer_norm(encoder_hidden_states)
|
1068 |
+
hidden_states = self.down_block(hidden_states)
|
1069 |
+
|
1070 |
+
batch_size, channels, height, width = hidden_states.shape
|
1071 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch_size, height * width, channels)
|
1072 |
+
hidden_states = self.project_to_hidden_norm(hidden_states)
|
1073 |
+
hidden_states = self.project_to_hidden(hidden_states)
|
1074 |
+
|
1075 |
+
|
1076 |
+
if joint_attention_kwargs is not None:
|
1077 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
1078 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
1079 |
+
else:
|
1080 |
+
lora_scale = 1.0
|
1081 |
+
|
1082 |
+
if USE_PEFT_BACKEND:
|
1083 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1084 |
+
scale_lora_layers(self, lora_scale)
|
1085 |
+
else:
|
1086 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
1087 |
+
logger.warning(
|
1088 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
1089 |
+
)
|
1090 |
+
|
1091 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
1092 |
+
if guidance is not None:
|
1093 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
1094 |
+
else:
|
1095 |
+
guidance = None
|
1096 |
+
temb = (
|
1097 |
+
self.time_text_embed(timestep, pooled_projections)
|
1098 |
+
if guidance is None
|
1099 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
if txt_ids.ndim == 3:
|
1103 |
+
logger.warning(
|
1104 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
1105 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
1106 |
+
)
|
1107 |
+
txt_ids = txt_ids[0]
|
1108 |
+
if img_ids.ndim == 3:
|
1109 |
+
logger.warning(
|
1110 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
1111 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
1112 |
+
)
|
1113 |
+
img_ids = img_ids[0]
|
1114 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
1115 |
+
|
1116 |
+
image_rotary_emb = self.pos_embed(ids)
|
1117 |
+
|
1118 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
1119 |
+
if self.training and self.gradient_checkpointing:
|
1120 |
+
|
1121 |
+
def create_custom_forward(module, return_dict=None):
|
1122 |
+
def custom_forward(*inputs):
|
1123 |
+
if return_dict is not None:
|
1124 |
+
return module(*inputs, return_dict=return_dict)
|
1125 |
+
else:
|
1126 |
+
return module(*inputs)
|
1127 |
+
|
1128 |
+
return custom_forward
|
1129 |
+
|
1130 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1131 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
1132 |
+
create_custom_forward(block),
|
1133 |
+
hidden_states,
|
1134 |
+
encoder_hidden_states,
|
1135 |
+
temb,
|
1136 |
+
image_rotary_emb,
|
1137 |
+
**ckpt_kwargs,
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
else:
|
1141 |
+
encoder_hidden_states, hidden_states = block(
|
1142 |
+
hidden_states=hidden_states,
|
1143 |
+
encoder_hidden_states=encoder_hidden_states,
|
1144 |
+
temb=temb,
|
1145 |
+
image_rotary_emb=image_rotary_emb,
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
|
1149 |
+
# controlnet residual
|
1150 |
+
if controlnet_block_samples is not None:
|
1151 |
+
interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
|
1152 |
+
interval_control = int(np.ceil(interval_control))
|
1153 |
+
hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
|
1154 |
+
|
1155 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
1156 |
+
|
1157 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
1158 |
+
if self.training and self.gradient_checkpointing:
|
1159 |
+
|
1160 |
+
def create_custom_forward(module, return_dict=None):
|
1161 |
+
def custom_forward(*inputs):
|
1162 |
+
if return_dict is not None:
|
1163 |
+
return module(*inputs, return_dict=return_dict)
|
1164 |
+
else:
|
1165 |
+
return module(*inputs)
|
1166 |
+
|
1167 |
+
return custom_forward
|
1168 |
+
|
1169 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
1170 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1171 |
+
create_custom_forward(block),
|
1172 |
+
hidden_states,
|
1173 |
+
temb,
|
1174 |
+
image_rotary_emb,
|
1175 |
+
**ckpt_kwargs,
|
1176 |
+
)
|
1177 |
+
|
1178 |
+
else:
|
1179 |
+
hidden_states = block(
|
1180 |
+
hidden_states=hidden_states,
|
1181 |
+
temb=temb,
|
1182 |
+
image_rotary_emb=image_rotary_emb,
|
1183 |
+
)
|
1184 |
+
|
1185 |
+
# controlnet residual
|
1186 |
+
if controlnet_single_block_samples is not None:
|
1187 |
+
interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
|
1188 |
+
interval_control = int(np.ceil(interval_control))
|
1189 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
1190 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
1191 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
1195 |
+
|
1196 |
+
|
1197 |
+
hidden_states = self.project_from_hidden_norm(hidden_states)
|
1198 |
+
hidden_states = self.project_from_hidden(hidden_states)
|
1199 |
+
|
1200 |
+
|
1201 |
+
hidden_states = hidden_states.reshape(batch_size, height, width, channels).permute(0, 3, 1, 2)
|
1202 |
+
|
1203 |
+
hidden_states = self.up_block(hidden_states)
|
1204 |
+
|
1205 |
+
if USE_PEFT_BACKEND:
|
1206 |
+
# remove `lora_scale` from each PEFT layer
|
1207 |
+
unscale_lora_layers(self, lora_scale)
|
1208 |
+
|
1209 |
+
output = self.mlm_layer(hidden_states)
|
1210 |
+
# self.unfuse_qkv_projections()
|
1211 |
+
if not return_dict:
|
1212 |
+
return (output,)
|
1213 |
+
|
1214 |
+
|
1215 |
+
return output
|
vqvae/config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "VQModel",
|
3 |
+
"_diffusers_version": "0.30.2",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
256,
|
9 |
+
512,
|
10 |
+
768
|
11 |
+
],
|
12 |
+
"down_block_types": [
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D",
|
16 |
+
"DownEncoderBlock2D",
|
17 |
+
"DownEncoderBlock2D"
|
18 |
+
],
|
19 |
+
"in_channels": 3,
|
20 |
+
"latent_channels": 64,
|
21 |
+
"layers_per_block": 2,
|
22 |
+
"lookup_from_codebook": true,
|
23 |
+
"mid_block_add_attention": false,
|
24 |
+
"norm_num_groups": 32,
|
25 |
+
"norm_type": "group",
|
26 |
+
"num_vq_embeddings": 8192,
|
27 |
+
"out_channels": 3,
|
28 |
+
"sample_size": 32,
|
29 |
+
"scaling_factor": 0.18215,
|
30 |
+
"up_block_types": [
|
31 |
+
"UpDecoderBlock2D",
|
32 |
+
"UpDecoderBlock2D",
|
33 |
+
"UpDecoderBlock2D",
|
34 |
+
"UpDecoderBlock2D",
|
35 |
+
"UpDecoderBlock2D"
|
36 |
+
],
|
37 |
+
"vq_embed_dim": null,
|
38 |
+
"force_upcast": true
|
39 |
+
}
|
vqvae/diffusion_pytorch_model.fp16.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62ac839c4caebd5221d3c69a26ae76c057a2bb5b34ac59acec2e48ce4b9ae0a8
|
3 |
+
size 292520582
|
vqvae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1241a5c88b635af4f8cfb268e388ccaa70f55a458a473d68943e5c28d7b7f762
|
3 |
+
size 585009980
|